Computex 2021: TeamGroup Goes BIG, the Xtreem DDR4-3600 256 GB Memory Kit

At the all-digital Computex 2021 trade show, TeamGroup has announced a new high-capacity memory kit designed for the high-end desktop market and workstation use. The new TeamGroup T-Force Xtreem ARGB DDR4-3600 kit boasts a combined capacity of 256 GB with 8 x 32 GB modules.


Whether it’s ridiculous amounts of Google Chrome tabs or a more realistic use case such as video editing, the Xtreem ARGB DDR4-3600 256 GB kit aims to provide a premium solution for workstation users on compatible platforms such as AMD’s Threadripper 3000 series or Intel’s Cascade Lake-X. The memory itself has a rectangular mirror finish on its illuminated heatsinks, designed to produce a layered effect that TeamGroup says is ‘dazzling.’



Regarding the specifications, the 256 GB kit has eight 32 GB sticks that operate at 3600 MT/s (DDR4-3600) and have primary latency timings of CL 18-22-22-42. There’s no information available on the specific memory chips this kit is using, nor does TeamGroup specify the operating voltage of the kit. It has the speed to satisfy gaming demands, with AMD Threadripper using its Infinity Fabric interconnect in parallel with memory frequency.


At present, we don’t know when the TeamGroup T-Force Xtreem ARGB 256 GB (8 x 32 GB) kit will hit retail shelves, nor do we have the pricing. One thing is for certain; it’s not going to be cheap as a similar kit in the Xtreem ARGB series with 64 GB (2 x 32 GB) retails for $420 at Newegg.



Source: AnandTech – Computex 2021: TeamGroup Goes BIG, the Xtreem DDR4-3600 256 GB Memory Kit

The Apple WWDC 2021 Keynote Live Blog (Starts at 10am PT/17:00 UTC)

As things slowly get back to normal, Apple’s annual World Wide Developers Conference is taking virtual place this week in its traditional early-June slot. As always, Apple kicks off WWDC with their big keynote event, which though aimed first and foremost at developers, is also used as a venue to announce new products and ecosystem strategies. The keynote starts at 10am Pacific (17:00 UTC) today, and AnandTech will be offering live blog coverage of Apple’s event.


A rapid-fire, two-hour run through Apple’s ecosystem, WWDC keynotes cover everything from macOS and iOS to individual Apple applications and more. On the hardware side of matters, last year we saw the official announcement of Apple’s shift from x86 processors to Arm processors for their venerable Mac lineup of computers, and while it’s unlikely Apple is going to have anything to top that for WWDC21, the company is not even half-way through its transition to Arm SoCs. So this year’s WWDC gives Apple ample opportunity to reflect on the Arm transition thus far, as well as what’s coming next for the company’s more powerful Macs.


So join us at 10am Pacific to see just what Apple is working on for this year and beyond.



Source: AnandTech – The Apple WWDC 2021 Keynote Live Blog (Starts at 10am PT/17:00 UTC)

After Selling HyperX to HP, Kingston Resurrects FURY Brand for DRAM and SSDs

Last week, we reported that the highly anticipated acquisition of Kingston’s HyperX gaming brand by HP was completed for the sum of $325 million. As we noted, the terms of the deal did not include any of the HyperX branded DRAM, flash, or storage products, which is Kingston’s bread and butter, as the deal focused more on the gaming accessory business as well as the brand value. We have now learned that Kingston is rebranding the DRAM and storage products it retains as the FURY series.


Although Kingston is planning a formal announcement of the brand on the 19th of July 2021, it shared details with us on some of its new key ranges. The FURY series isn’t new to Kingston, as it debuted back in 2014 as one of its more affordable memory ranges designed for gamers on a budget. Kingston has rebranded its own series in preparation for a new start and marketing strategy for its consumer-focused DRAM and storage products.


From the new product lines, the Kingston FURY Renegade memory series will feature speeds of up to DDR4-5333 MT/s, with both RGB and non-RGB options available. The rebranded FURY Beast series will sit as the new entry-level in its gaming-centric DRAM products, with DDR3 and DDR4 products with speeds of up to 3733 MT/s. Its FURY Impact range offers competitive options for laptops, NUCs, and other types of small form factor systems, with DDR3 and DDR4-3200 SO-DIMMs. Kingston has yet to unveil any details about its impending FURY storage products at this time.


There’s no word on availability or price at present, but we expect to find out more on the 19th of July 2021, when Kingston officially unveils its new FURY products to the public.


Source: Kingston



Source: AnandTech – After Selling HyperX to HP, Kingston Resurrects FURY Brand for DRAM and SSDs

Computex 2021: ASRock Announces Mars 5000U Series Mini PC

During Computex 2021, ASRock unveiled the latest series in its Mars mini-PC range, the Mars 5000U. ASRock claims it’s the thinnest AMD mini PC globally and comes equipped with AMD’s latest 5000 series APU. It features support for DDR4-3200 SO-DIMM memory, one PCIe 3.0 x4 M.2 slot, a 2.5″ SATA hard drive bay, and an Intel Wi-Fi 6 interface.


The ASRock Mars 5000U series comes in a svelte and very slimline black brushed aluminum chassis, with dimensions of 194 x 150 x 26 mm (W x D x H), making it a single mm thicker than a regular chassis fan. Due to there being very little wiggle room for space inside, at just 0.7 liters, ASRock uses a proprietary fan and heatsink combination to keep the AMD Ryzen 5000U APU cool. For memory, there’s a pair of memory slots that can accommodate up to 64 GB of DDR4-3200 SO-DIMM memory, while storage capabilities include one PCIe 3.0 x4/SATA M.2 slot and one 2.5″ SATA hard drive bay.



It is powered by a 65 W/19 V adaptor akin to a laptop charger and includes a decent selection of I/O. Included are four USB 3.2 G1 Type-A (two rear, two front), one USB 3.2 G1 Type-C (front), and two USB 2.0 (front) ports. The Mars 5000G also includes a 3-in-1 card reader including SD, SDHC, and SDXC support and two video outputs consisting of an HDMI and D-Sub. Networking options include one unspecified Gigabit Ethernet port with an Intel AX200 wireless interface offering Wi-Fi and BT 5.0 connectivity. An unspecified audio solution also powers a 3.5 mm microphone and 3.5 mm headphone jack combination.


The ASRock Mars 5000U series looks very similar to the previous Mars 4000 series mini-PC series. The only difference is that the newer model supports the upcoming Ryzen 5000 APUs based on AMD’s Zen 3 microarchitecture. ASRock hasn’t stated which APUs it will offer. Pricing is currently unknown.



Source: AnandTech – Computex 2021: ASRock Announces Mars 5000U Series Mini PC

Computex 2021: GIGABYTE Server Updates MZ72-HB0 For Dual Socket 3rd Gen EPYC

During Computex 2021 in Taipei, although the event is all-digital due to the Coronavirus pandemic, GIGABYTE Server has showcased its newly revised MZ72-HBO dual-socket motherboard with support for AMD’s 3rd generation EPYC 7003 processors. The GIGABYTE Server MZ72-HBO boasts support for up to 128 cores and 256 threads (64c/128t per socket), dual 10 GbE Base-T Ethernet, up to 4 TB of DDR4-3200 memory, and five full-length PCIe 4.0 slots.


In the server workspace, the use case for high-core count processors includes data centers, cloud computing, and MPI parallel programming. This is where the GIGABYTE Server MZ72-HB0 comes in, with support for up to 280 W TDP chips. This means it can support a maximum of 128-cores and 256 threads of powerful Zen 3 EPYC 7003 goodness across both AMD SP3 sockets. Each of the SP3 sockets includes eight memory slots (sixteen in total), with support for up to 2 TB of DDR4-3200 memory per processor operating in eight-channel, with RDIMM, LRDIMM, and 3DS memory types all supported. 



The GIGABYTE Server MZ72-HB0 Revision 3.0 boasts a wide variety of features, including lots of storage, with one PCIe 4.0 x4 M.2 slot, four 7-pin SATA ports, and three SlimSAS ports offering support for either twelve SATA or three PCIe 4.0 U.2 NVMe drives. Included on the board is an ASPEED AST2500 BMC controller, which allows access to GIGABYTE’s Management Console (GMC), and includes a Gigabit Management LAN port for remote access. Other networking capability includes a pair of 10 GbE Base-T LAN ports powered by a Broadcom BCM57416 controller. On the lower portion of the board are five full-length PCIe 4.0 slots that can operate at x16/x16/x16/x8/x8, while I/O on the rear panel includes two USB 3.0, a COM port, and a D-sub video output for the BMC.


At the time of writing, we are unsure when the GIGABYTE Server MZ72-HB0 will be available at retail, however the company has started channel distributions and we actually have a review unit in-house on our Milan test-bench. However, the previous MZ72-HB0 (revision 1.0) model with support for EPYC 7002 processors retails between $700 and $900 depending on the retailer. Due to this, we expect the newer revision 3.0 model to fall in a similar price bracket.


Source: GIGABYTE Server




Source: AnandTech – Computex 2021: GIGABYTE Server Updates MZ72-HB0 For Dual Socket 3rd Gen EPYC

Computex 2021: ASRock Unveils New X570S and B550 PG Riptide Motherboards

Back in July 2019, when AMD unveiled its X570 chipset for its Ryzen processors, it captivated enthusiasts and PC users as the first desktop chipset to feature PCIe 4.0. This brought many vendors wondering how to keep the chipset cool, and all but one (GIGABYTE X570 Aorus Xtreme) came with some form of active cooling. Fast forward to 2021 and the latest iteration of new models dubbed X570S does away with the chipset fan altogether. In lieu of this, ASRock has announced the new PG Riptide series with both an X570S and B550 model designed for gamers.


Starting with the more premium of the two, the ASRock X570S PG Riptide has dual PCIe 4.0 x4 M.2 (one with SATA support) and six SATA ports with support for RAID 0, 1, and 10 arrays. There are a total of three full-length PCIe 4.0 slots that can operate at x16/x0/+x4 and x8/x8/+4, with three PCIe 4.0 x1 slots sandwiched in between. Other connectivity includes a front panel USB 3.2 G2 Type-C header, two USB 3.2 G1 Type-A headers (four ports), and two USB 2.0 headers (four ports). 




The ASRock X570S PG Riptide motherboard


Aesthetics on both models are practically identical, with the X570S featuring a larger square chipset heatsink, with the chipset heatsink on the B550 resemblant of a shield. The ASRock B550 PG Riptide has three full-length PCIe slots, with the top slot operating at PCIe 4.0 x16 and the other two operating at PCIe 3.0 x4/x1, with three PCIe 3.0 x1 slots. Regarding storage, the B550 model has one PCIe 4.0 x4 M.2 slot, one PCIe 3.0 x4/SATA slot, and six SATA ports with support for RAID 0, 1, and 10 arrays.


The ASRock X570S PG Riptide supports DDR4-5000, while the B550 PG Riptide supports up to DDR4-4933 out of the box. Both have four memory slots with support for up to 128 GB of capacity. Both models are also advertised to feature a 10-phase power delivery with Dr. MOS power stages. Both models also come supplied with ASRock’s patent-pending VGA holder.




ASRock PG Riptide X570S (top) and B550 (bottom) rear panels


The ASRock X570S PG Riptide has one USB 3.2 G2 Type-C, one USB 3.2 G2 Type-A, four USB 3.2 G1 Type-A, and two USB 2.0 ports on the rear panel. In contrast, the B550 PG Riptide includes the same but with two additional USB 3.2 G1 Type-A ports. Both rear panels include a Killer E3100G 2.5 GbE controller, with space through an M.2 Key-E slot for users to add a Wi-Fi module, while both also use a Realtek ALC897 HD audio codec which adds five 3.5 mm audio jacks and a S/PDIF optical output. There’s one HDMI 2.1 video output and a PS/2 keyboard and mouse combo port on both models, while the X570S includes a small BIOS flashback button.


At the time of writing, ASRock hasn’t said when the new PG Series X570S and B550 will be available or how much either board will cost.



Source: ASRock



Source: AnandTech – Computex 2021: ASRock Unveils New X570S and B550 PG Riptide Motherboards

Computex 2021: MSI MPG Gaming Maverik Bundle with i7-11700K

At an all-digital rendition of Computex 2021, MSI has unveiled a new bundle designed for gamers looking for a comprehensive and optimized gaming system. Based on its performance gaming series, the MSI MPG Gaming Maverick bundle comes complete with an Intel Core i7 11th generation Rocket Lake processor and special edition components, including G.Skill Trident Z Maverik DDR4 memory, an MSI MPG Z590 Gaming Edge WIFI SP motherboard, and an SP edition Coreliquid 360 mm AIO. All of this comes inside of an MSI MPG Velox 100P SP special edition chassis.


The MSI MPG Gaming Maverik is a premium bundle offering gamers a semi-prebuilt system (minus storage, power, and graphics), with a set of special edition “MSI SP” componentry. MSI hasn’t specified what the SP stands for, but the general theme follows black, with pink, purple, and blue accentuation throughout. The motherboard of choice for the system is the same specification as the regular MSI MPG Z590 Gaming Edge WIFI, but with the SP design. It includes plenty of premium features, including three M.2 slots (one PCIe 4.0 x4), six SATA, USB 3.2 G2x2 Type-C connectivity, as well as Intel’s I225-V 2.5 GbE controller, and an Intel AX210 Wi-Fi 6E CNVi.


The Gaming Maverik bundle also comes with 32 GB (2 x 16 GB) of special edition G.Skill Trident Z Maverik DDR4-3600 memory. The memory itself has latency timings of 18-22-22-42, with an operating voltage of 1.35 V. It operates in dual channel mode and is only available as part of the Maverik bundle itself.



At the heart of the MSI MPG Gaming Maverik bundle is Intel’s Core i7-11700K Rocket Lake processor, with eight cores, sixteen threads, and a boost frequency of 4.8 GHz. Keeping it cool is an MSI MPG Coreliquid K360 SP 360 mm AIO CPU cooler, with everything preinstalled before shipping. The CPU cooler itself uses a 2.4″ LCD on the pump for visual effect and comes with three 2500 RPM ARGB cooling fans. Everything within the bundle is preinstalled for users to drop storage, a power supply, and a graphics card in, with the case of choice being MSI’s MPG Velox 100P Airflow SP. The bundle has matching hardware throughout and uses a gaming-inspired and futuristic design, quite similar to the look of the original ASUS ROG Strix series.


The MSI MPG Gaming Maverik bundle will be available to buy from June, with only a limited quantity available. At the time of writing, MSI hasn’t given us any pricing information.


Source: MSI




Source: AnandTech – Computex 2021: MSI MPG Gaming Maverik Bundle with i7-11700K

NVMe 2.0 Specification Released: Major Reorganization

Version 2.0 of the NVM Express specification has been released, keeping up the roughly two year cadence for the storage interface that is now a decade old. Like other NVMe spec updates, version 2.0 comes with a variety of new features and functionality for drives to implement (usually as optional features). But the most significant change—and the reason this is called version 2.0 instead of 1.5—is that the spec has been drastically reorganized to better fit the broad scope of features that NVMe now encompasses. From its humble beginnings as a block storage protocol operating over PCI Express, NVMe has grown to also become one of the most important networked storage protocols, and now also supports storage paradigms that are entirely different from the hard drive-like block storage abstraction originally provided by NVMe.



Instead of a base specification for typical PCIe SSDs and a separate NVMe over Fabrics spec, version 2.0 is designed to be a more modular specification and has been split into several documents. The base specification now covers both locally-attached devices and NVMeoF, but more abstractly—enough has been moved out of the base spec that it is no longer sufficient to define all of the functionality needed to implement a simple SSD. Real devices will also need to refer to at least one Transport spec and at least one Command Set spec. For typical consumer SSDs, that means using the PCIe transport spec and the block storage command set. Other transport options currently include networked NVMe over Fabrics using either TCP or RDMA. Other command set options include Zoned Namespace and Key-Value command sets. We already covered Zoned Namespaces in depth when it was approved for inclusion last year. The three standardized command sets (block, zoned, key-value) cover different points along the spectrum from simple SSDs with thin abstractions over the underlying flash, to relatively complicated, smart drives that take on some of the storage management tasks that would have traditionally been handled by software on the host system.

 

Many of the new features in NVMe 2.0 are minor extensions to existing functionality, making those features more useful and more broadly usable. For example, partitioning a device’s storage into NVM Sets and Endurance Groups was introduced in NVMe 1.4, but the spec didn’t say how those divisions would be created; that configuration would either need to be hard-coded by the drive’s firmware, or handled with vendor-specific commands. NVMe 2.0 adds a standard capacity management mechanism for endurance groups and NVM sets to be allocated, and also adds another layer of partitioning (Domains) for the sake of massive NVMeoF storage appliances that needed more tools for slicing up their pool of available storage, or isolating the performance impacts of different users on shared drives or arrays.



The NVMe spec originally anticipated the possibility of multiple command sets beyond the base block storage command set. But the original mechanism included for supporting multiple command sets is not adequate for today’s use cases: a handful of reserved bits in the controller capabilities data structure are not enough to encompass all the possibilities for what today’s SSDs might implement. In particular, the new system for handling multiple command sets now makes it possible for different namespaces behind the same controller to support different command sets, rather than requiring all namespaces to support all of the command sets their parent controller supports.


Zoned and key-value command sets were already on the radar when NVMe 1.4 was completed, and now those technologies have been incorporated into 2.0 with equal status to the original block storage command set. Future command sets such as for computational storage drives are still a work in progress not ready for standardization, but the NVMe spec is now able to more easily incorporate such new developments. NVMe could in principle also add an Open Channel command set that exposes most or all of the raw details of managing NAND flash memory (pages, erase blocks, defect management, etc.), but the general industry consensus is that the zoned storage paradigm strikes a more reasonable balance, and interest in Open Channel SSDs is waning in favor of Zoned Namespaces.


For enterprise use cases, NVMe inherited Protection Information support from SCSI/SAS—associating some extra information with each logical block, which is used to verify end to end data integrity. NVMe 2.0 extends the existing Protection Information support from supporting 16-bit CRCs to also supporting 32-bit and 64-bit CRCs, allowing for more robust data protection for large-scale storage systems.


NVMe 2.0 introduces a significant new security feature: command group control, configured using a new Lockdown command. NVMe 1.4 added a namespace write protect capability that allows the host system to put namespaces into a write-protect mode until explicitly unlocked or until the drive is power cycled. NVMe 2.0’s Lockdown allows similar control to disallow other commands. This can be used to put a drive in a state where both ordinary reads and writes are allowed, but various admin commands are locked out so the drive’s other features cannot be reconfigured. As with the previous write protect feature, this command group control supports setting these restrictions until they are explicitly removed, or until a power cycle.


For NVMe over Fabrics use cases, NVMe 2.0 clarifies how to handle firmware updates and safe device shutdown in scenarios where the shared storage is accessible through multiple controllers. There’s also now explicit support for hard drives. Even though it’s unlikely that hard drives will switch anytime soon to natively use PCIe connections instead of SAS or SATA, supporting rotational media means enterprises can unify their storage networking with NVMe over Fabrics and drop older protocols like iSCSI.


Overall, NVMe 2.0 doesn’t bring as much in the way of new functionality as some of the previous updates. In particular, nothing in this update stands out as being relevant to client/consumer SSDs. But the spec reorganization should make it easier to iterate and experiment with new functionality, and the next several years will hopefully see more frequent updates with smaller changes rather than bundling up two or three years of work for big spec updates.


 


Related Reading:




Source: AnandTech – NVMe 2.0 Specification Released: Major Reorganization

ASRock Announces AMD X300TM-ITX Motherboard: Thin ITX For Ryzen APUs

Once upon a time, the term ‘bigger is better’ was a marketing slogan that many companies adopted for its products, but sometimes ‘bigger’ isn’t necessarily practical. For use cases where size (smaller) actually matters, ASRock has unveiled a dinky little motherboard designed for use with its Ryzen based APUs, the X300TM-ITX. Based on AMD’s AM4 chipset and the Thin Mini-ITX form factor, it includes one M.2 slot, dual HDMI video output, and support for 64 GB of DDR4-3200 SO-DIMM memory. Thin Mini-ITX in this case means a reduced overall z-height, and the rear panel IO is limited on how tall it can be.


The ASRock X300TM-ITX includes support for most of AMD’s Ryzen APUs (all except the new Ryzen 5000 series APUs are listed). This includes Ryzen 2000, Ryzen 3000, Ryzen 4000, and the associated PRO APU parts. On the slender yet unassuming black PCB is a pair of memory slots capable of supporting up to 64 GB of DDR4-3200 SO-DIMM memory. For storage, ASRock includes a single PCIe 3.0 x4 M.2 slot with support for the faster NVMe based SSDs and a single SATA port for conventional storage and optical devices. The X300TM-ITX is designed to harness the integrated Radeon graphics within the APUs it supports as it does away with any full-length PCIe slots.



Due to its smaller than usual Thin-ITX frame, the ASRock X300TM-ITX has less space for larger connectors such as 24-pin 12 V ATX which typically power motherboards. Providing power to the board is a 19 V DC power input on the rear panel and a 4-pin 19 V connector on the PCB itself. Interestingly, ASRock includes an LVDS header, a COM port, and dual HDMI 2.1 video outputs. Regarding USB connectivity, there’s USB 3.2 G1 Type-A and a single USB 3.2 G1 Type-C port, with two USB 2.0 front panel headers providing support for four additional ports. The X300TM-ITX uses a single Realtek RTL8111GR Gigabit Ethernet controller. It includes a single M.2 Key-E slot for users looking to add Wi-Fi modules, while audio is handled by a Realtek ALC233 HD audio codec providing a 3.5 mm headphone and 3.5 mm microphone jack pairing.


We expect the ASRock X300TM-ITX to be available to purchase soon, but there’s no available pricing at the time of writing.


Source: ASRock



Related Reading




Source: AnandTech – ASRock Announces AMD X300TM-ITX Motherboard: Thin ITX For Ryzen APUs

HP Completes HyperX Acquisition For $425 Million

Back in February, we revealed that HP was set to acquire the HyperX brand, the gaming subsidiary of Kingston Technology. HyperX has been the gaming branding for Kingston Technology over the years, with memory, flash, SSDs and peripherals all marketed under the HyperX banner. Like many companies with its own gaming-focused brand, Kingston has kept the brand as a disaggregated entity in strategy and marketing. Today, the acquisition by HP of the HyperX brand has been completed for a fee of $425 million, with the acquisition accretive on a non-GAAP for the first full year of ownership.


HyperX has been synonymous with the gaming industry for years, from its popular and well-priced Cloud series of gaming headsets to its SSD storage drives and all the way to its sponsorship of some of the biggest personalities in gaming. This includes popular streamers such as Pokimane, Dendi, and some of the most notable teams in professional eSports, such as Cloud 9, Reign, and Panda. Current sponsorships will remain with the HyperX brand, and transfer over as part of the acquisition.




Some of the features on the HP Omen 30L Gaming Desktop with an NVIDIA GeForce RTX 3080


HP and Kingston/HyperX jointly announced the acquisition back in February 2022. HP quoted that the PC hardware industry is set to be worth around $70 billion by 2023, and the global peripherals market to grow to $12.4 billion in 2024. HP currently retails and markets its OMEN series of gaming desktops and laptops. The HyperX brand could potentially be a big part of that in the future, with a view to a larger gaming ecosystem. Tapping into both elements of the gaming and PC hardware market seems a highly desirable choice by HP. It could be one of the key reasons for the acquisition and bolster its visibility and presence as a gaming-focused brand.


One of the most notable aspects of the buyout is that Kingston is retaining the DRAM, Flash, and SSD products. Kingston may intend to focus on the memory and storage markets, although it’s also plausible to rebrand its current DRAM memory and storage lines. All this remains to be seen, but the acquisition does see the transference of all the other HyperX elements such as peripherals, audio, power supplies, console accessories, and apparel to HP.


How HP intends to market and amalgamate HyperX into its business and existing product ranges remains to be seen. Still, these are questions that HP should answer in time with any brand reorganization likely to be addressed relatively quickly.


Source: HP



Source: AnandTech – HP Completes HyperX Acquisition For 5 Million

Micron Announces PCIe 4.0 Client SSDs

In Micron’s keynote today at (virtual) Computex, the memory manufacturer announced they have started shipping the companies first PCIe 4.0 SSDs, using their latest 176-layer 3D TLC NAND flash memory. The two new product families are the Micron 3400 and 2450 series client SSDs.


The 3400 series is their high-end client SSD, with double the read throughput of their preceding Micron 2300, and 85% higher write throughput. The 3400 uses Micron’s latest in-house SSD controller design, and Micron is touting performance and power efficiency that make the drive suitable for applications ranging from notebooks to workstations. As is typical for high-end client PCIe 4.0 SSDs, the capacity options start at 512GB and go up 2TB.



The Micron 2450 series is a more entry-level design but still featuring PCIe 4.0 support. This one uses a third-party DRAMless controller, likely the Phison E19T (also believed to be used in the recently-announced WD Black SN750 SE). The 2450 is available in three different M.2 card lengths from the usual 80mm down to the 30mm card size suitable for extremely compact systems. The Micron 2450 series covers the more mainstream capacity range of 256GB through 1TB.


The most highly-awaited products with Micron’s 176L 3D TLC might be the upcoming refreshed Phison E18 drives that threaten to dominate the high-end market segment, but Micron’s own 176L SSDs will help bring this latest generation of NAND to a wider range of products, including pre-built systems where OEMs seldom offer options quite as high-end as a Phison E18 drive. Micron’s new client SSDs are already in volume production and shipping to customers.



Source: AnandTech – Micron Announces PCIe 4.0 Client SSDs

TSMC Manufacturing Update: N6 to Match N7 Output by EOY, N5 Ramping Faster, Better Yields Than N7

As part of a regular TSMC Technology Symposium, the foundry published updates on its status on it’s current leading-edge manufacturing technologies, the N7, N5 and their respective derivatives such as N6 and N5.



Source: AnandTech – TSMC Manufacturing Update: N6 to Match N7 Output by EOY, N5 Ramping Faster, Better Yields Than N7

AMD confirms Ray-Tracing and VRS in Samsung Exynos RDNA GPU IP

At this year’s AMD Computex 2021 keynote event, CEO Lisa Su, among a series of various new product announcements and technology disclosures, has teased some new details on the company’s cooperation with Samsung in regards to the new RDNA GPU IP that’s been licensed out and the two companies have been working on to deliver in the next-generation Exynos SoCs.



Source: AnandTech – AMD confirms Ray-Tracing and VRS in Samsung Exynos RDNA GPU IP

NVIDIA Announces GeForce RTX 3080 Ti & 3070 Ti: Upgraded Ampere Cards Coming in June

The second major keynote of the day for Computex comes from NVIDIA, who has taken to the virtual showfloor to discuss new products for both gamers and the enterprise market. On the gaming side of matters, the company is officially announcing its GeForce RTX 3080 Ti and RTX 3070 Ti cards. The refreshed GeForce cards will land in early June, further expanding the high-end of NVIDIA’s video card lineup.



Source: AnandTech – NVIDIA Announces GeForce RTX 3080 Ti & 3070 Ti: Upgraded Ampere Cards Coming in June

AMD Demonstrates Stacked 3D V-Cache Technology: 192 MB at 2 TB/sec

The AMD team surprised us here. What seemed like a very par-for-the-course Computex keynote turned into an incredible demonstration of what AMD is testing in the lab with TSMC’s new 3D Fabric technologies. We’ve covered 3D Fabric before, but AMD is putting it to good use by stacking up its processors with additional cache, enabling super-fast bandwidth, and better gaming performance. That’s the claim at any rate, and AMD showcased its new demo processor on stage at Computex. Here’s a deeper run-down into what it actually is.



Source: AnandTech – AMD Demonstrates Stacked 3D V-Cache Technology: 192 MB at 2 TB/sec

The ASUS ROG Strix G15 (G513QY) Review: Embracing AMD's Advantage

The 1989 film Field of Dreams offers one of the most memorable quotes in movie history. “If you build it, he will come” was, of course, a reference to a baseball diamond in Iowa, but for AMD, this same quote (gender removed) also succeeds in defining AMD’s success over the last couple of generations. Once the realm of budget-conscious devices, AMD-based products are now the premium in the market and are sought after by consumers looking for the ultimate in performance. With the launch of the Zen 3 based Cezanne laptop processors, AMD now offers the most powerful laptop CPUs available. But that is only a single portion of a successful product. AMD is today announcing the launch of their latest graphics architecture, RDNA2, into the laptop market. AMD has built it. Now they must see who will come.



Source: AnandTech – The ASUS ROG Strix G15 (G513QY) Review: Embracing AMD’s Advantage

AMD Formally Unveils FidelityFX Super Resolution: Open Source Game Upscaling

Alongside announcing their new Radeon RX 6000M notebook GPUs, AMD this evening is also using Computex to formally unveil their FidelityFX Super Resolution technology. The game upscaling technology has garnered a lot of interest since AMD first announced last year that they were working on the technology, today AMD is finally lifting the lid on the technology, at least for a brief moment. Overall today is more of a teaser of what’s to come on June 22nd, when AMD is planning to reveal more information on the technology, but for the moment this is the biggest information release on the technology since AMD’s initial announcement.


As a quick recap, AMD announced FidelityFX Super Resolution last year as part of the Radeon RX 6000 series launch. The in-development technology was being designed as AMD’s answer to NVIDIA’s increasingly popular Deep Learning Super Sampling (DLSS) technology, an advanced image upscaling technique NVIDIA introduced to allow their GPUs to render games at a lower resolution (and thus higher performance) without the severe hit to image quality. Research into DLSS and similar smart upscaling techniques has become increasingly intense, as upscaling offer a tantalizing way to improve game performance via what’s computationally a relatively cheap post-processing effect.


While NVIDIA seems to have finally hit their stride with DLSS 2.0, the downside for everyone who is not NVIDIA is that it’s an NVIDIA-only technology. Which for AMD, means it’s yet another NVIDIA value-add software feature that NVIDIA can use to outmaneuver AMD. And while it’s not strictly necessary for AMD to match NVIDIA on a one-for-one software feature basis, clearly DLSS is the start of a bigger shift in the game rendering landscape, so it’s an area where AMD is going to try to catch up, both to nullify an NVIDIA advantage and to give PC game developers another tool in their arsenal for better performance.


And thus FidelityFX Super Resolution was born. While today is more a teaser than a detailed technical breakdown, AMD is confirming a few major facts about their take on smart game upscaling.



First and foremost, FSR, as AMD likes to call it, will be another one of AMD’s GPUOpen technologies, meaning that it will be published open source and free for developers to use. And not only will developers be able to use it on AMD GPUs, but they will be able to use it on NVIDIA GPUs as well.


AMD is not going into the specific technical underpinnings of the execution model here – I’m assuming this is being implemented as a shader – but they are confirming that it doesn’t require any kind of tensor or other deep learning hardware. As a result, the technology can be used not only on recent AMD Radeon RX 6000 series cards, but also the RX 5000 series, RX 500 series, and Vega series. Meanwhile, though it won’t be officially supported to the same extent on NVIDIA cards, according to AMD FSR will work (on day one) on NVIDIA cards going back as far as the Pascal-based GTX 10 series (which pre-dates DLSS support). In fact about the only modern graphics hardware not supported at this point are the current-generation game consoles; AMD may get there one day, but for now they’re focusing on the PC side of things.


At this point AMD is not disclosing which games will support the technology, but the messaging right now is that developers will need to take some kind of an active role in implementing the tech. Which is to say that it’s not sounding like it can simply be applied in a fully post-processing fashion on existing games ala AMD’s contrast adaptive sharpening tech.


Following its June 22nd launch, AMD will be posting FSR to GPUOpen. Overall the company is stating that over 10 “game studios and engines” in 2021 will implement FSR, with more details to come on the 22nd. Expect to see Godfall among these game, as AMD is using it as their example game for today’s announcement.


Moving on, AMD is also revealing that FSR will have four quality modes. Similar to DLSS, I expect that these modes are all based on the upscaling factor used, and that the smaller upscaling factor used (the closer to native resolution you are) the higher the quality mode. Formally, these modes are Ultra Quality, Quality, Balanced, and Performance mode.


For today’s Computex presentation, AMD is publishing performance numbers from Godfall, running on a 6800XT. That card gets 49 fps when running at 4K with the “epic” image quality preset and ray tracing. This rises to 78 fps with FST in ultra quality mode, 99 fps in quality mode, 124 fps in balanced mode, and 150 fps in performance mode. The exact benefit will depend on the card and the game used, of course, but overall AMD is touting the tech’s performance mode as improving game performance by over 2x versus native 4K rendering.




(ed: this slide does not appear to have FSR applied; it’s just a fancy background for the performance data)


However the million dollar question – and the question that AMD won’t really be answering until the 22nd – is what the resulting image quality of FSR will be like. Like other upscaling techniques, FSR will live or die by how clean of an image it produces. Upscaling techniques are going for “good enough” results here, so it doesn’t need to match native quality, however it needs to be enough to produce a reasonably sharp image without serious spatial or temporal artifacts.


And, to drop into op-ed mode, this is where AMD has me a bit worried. In our pre-briefing with AMD, the company did confirm that FSR is going to be a purely spatial upscaling technology; it will operate on a frame-by-frame basis, without taking into account motion data (motion vectors) from the game itself.


For GPU junkies, many of you will recognize this as a similar strategy to how NVIDIA designed DLSS 1.0, which was all about spatial upscaling by using pre-trained, game-specific neural network models. DLSS 1.0 was ultimately a failure – it couldn’t consistently produce acceptable results and temporal artifacting was all too common. It wasn’t until NVIDIA introduced DLSS 2.0, a significantly expanded version of the technology that integrated motion vector data (essentially creating Temporal AA on steroids), that they finally got DLSS as we know it in working order.


Given NVIDIA’s experience with spatial-only upscaling, I’m concerned that AMD is going to repeat NVIDIA’s early mistakes. Spatial is a lot easier to do on the backend – and requires a lot less work from developers – but the lack of motion vector data presents some challenges. In particular, motion vectors are the traditional solution to countering temporal artifacting in TAA/DLSS, which is what ensures that there are no frame-by-frame oddities or other rendering errors from moving objects. Which is not to say that spatial-only upscaling can’t work, only that, if it’s competitive in image quality with DLSS, that would be a big first for AMD.


Unfortunately, AMD isn’t doing themselves any favors in this regard with today’s presentation. Within their slide deck there is a single split image with FSR seemingly enabled, which they use for a GTX 1060 performance comparison. I’ve gone ahead and extracted the raw image from the slide deck given to the press and uploaded it here, to try to preserve as much image quality as possible. (Be sure to click on it to see the full-resolution shot)



Taking a jab at NVIDIA by comparing the GTX 1060 running at 1440p native versus FSR in quality mode, the demonstration slide shows that performance is significantly improved, bringing the GTX 1060 from 27 fps to 38 fps. Unfortunately the image quality hit is quite noticeable here. The building and bridge are blurrier here than the native resolution example, and the tree in the background – which is composed of many fine details – easily gives up the fact that it’s running at a lower resolution.


With that said, as I haven’t seen the technology in person in motion yet, I’m not in a position to claim how good all of this looks in action. But at least for static screenshots, it does raise an eyebrow. Though I will give AMD credit here for publishing a (seemingly honest) screenshot like this, rather than cherry picking something that oversells FSR.


In any case, there’s a lot more technical information on FSR that we’ve yet to see, and which AMD will be presenting on June 22nd. And, given the open source nature of FSR, AMD has little incentive or ability to hold back on technical information for too long. So the questions raised today with their brief teaser will make for good discussion fodder for FSR’s actual launch.



Finally, ahead of the FSR launch AMD is soliciting feedback on what games users would like to see supporting the technology. AMD is preseumably going to use this to help guide their developer relations priorities, so if you’re interested in supplying feedback, be sure to stop by AMD’s FSR survey site.


Overall, it goes without saying that a lot of people are eager to see what AMD can do with game upscaling technology, both to level the playing field with NVIDIA and to bring it to a wider array of hardware and games. It’s an ambitious project from AMD, and it will undoubtedly be interesting to see how everything falls into place when AMD launches the tech on June 22nd. So be sure to stay tuned for that!




Source: AnandTech – AMD Formally Unveils FidelityFX Super Resolution: Open Source Game Upscaling

AMD Announces Radeon RX 6000M Series: RDNA2 Makes Its Laptop Debut

Headlining a busy Computex for AMD – and a bit of return to form in that regard – this evening the company is making several graphics and CPU-related product announcements. The most visible of which is on the GPU side of matters, where the company is launching their long-awaited Radeon RX 6000M series of laptop graphics adapters. Based on the same RDNA2 architecture that underpins AMD’s well-received desktop RX 6000 parts, the new mobile parts scale that down to power levels suitable for gaming laptops. All told, AMD is announcing three parts today – the Radeon RX 6800M, 6700M, and 6600M – with two of those parts shipping now.


Going back to CES 2021 at the start of the year, AMD has been touting laptop Radeon parts for the first half of 2021, and those parts are now landing right on schedule. All told today is a mix of new and old, with AMD releasing a new GPU as a mobile-first product (Navi 23), while also mobilizing the existing Navi 22 for use in laptops. Consequently, this means that there aren’t any major feature additions or hidden hardware capabilities to talk about for this launch. But that’s okay. AMD has plenty to offer just by bringing their RDNA2 GPUs to the laptop market.


When it launched on the desktop last year, the RDNA2 architecture was something of a turning point for AMD’s graphics division – a culmination of multiple generations’ worth of efforts to modernize their graphics architecture at both the execution and feature set levels. This has already paid off in spades for AMD on the desktop, but, as we’ll see over the coming weeks and months, it’s something that’s going to be an even bigger deal for AMD’s mobile graphics efforts.


To put things charitably for AMD, the company’s GPUs have been virtually absent from the laptop market for the last generation. Outside of their Apple commitment (with the interesting HBM-equipped Navi 12) and their experimental Dell collaboration (G5 15 SE) almost the entire laptop discrete graphics market was held by NVIDIA. And this was largely the case a generation before that, as well. AMD simply hasn’t had the hardware, software, and OEM relationships needed to drive a top-tier laptop graphics program, and that is finally changing, thanks in big part to RDNA2.


Power efficiency is incredibly important graphics performance, but that aspect is even more important for laptops. With desktop cards you can at least increase TDPs (to an extent) to buy more performance, but laptops are rigidly bound by the cooling capabilities of the form factor. So the only way to increase performance on a generational basis is to improve power efficiency, and that is an area where AMD has heavily invested into with RDNA2.



The net result is that AMD is in a much better position in this generation to fight for the laptop space. As we’ve already seen on the desktop, RDNA2 is performance and efficiency competitive, and that means AMD (finally) has the kind of architecture they need to make inroads into the laptop market. To be sure, even in the best-case scenario AMD isn’t going to immediately capture the majority of the laptop graphics market, but like their resurgence in laptop CPUs, laptop GPUs will be a multi-generational effort that has to start somewhere.


And the payoff for AMD isn’t just reputation, either. Laptop gaming continues to be a high growth area for the PC marketplace, and it can be very high margin as well, especially at the mid-to-high end. So for AMD’s graphics division, missing out on laptops hasn’t only cost them visibility and capital with game developers, but it’s left money on the table. This makes grabbing a sizable piece of the laptop all the more important for the company as part of their long-term product strategy.



But let’s not get too far ahead of ourselves. The first step for AMD is to launch a successful generation of laptop graphics adapters, which the company is aiming to do today with the Radeon RX 6000M series. Based on the Navi 22 and Navi 23 GPUs, AMD is taking their most power efficient graphics architecture yet and dropping it into laptops, looking to go toe-to-toe with arch-rival NVIDIA for the mid-range and high-end gaming laptop segments.





















AMD Radeon RX Mobile Series Specification Comparison
  AMD Radeon RX 6800M AMD Radeon RX 6700M AMD Radeon RX 6600M AMD Radeon RX 5600M
Stream Processors 2560

(40 CUs)
2304

(36 CUs)
1792

(28 CUs)
2304

(36 CUs)
ROPs 64 64 64 64
Game Clock 2300MHz <=2300MHz <=2177MHz 1375MHz
Boost Clock N/A N/A N/A 1560MHz
Throughput (FP32) 11.8 TFLOPS 10.6 TFLOPS 7.8 TFLOPS 5.5 TFLOPS
Memory Clock Up to 16 Gbps GDDR6 Up to 16 Gbps GDDR6 Up to 16 Gbps GDDR6 12 Gbps GDDR6
Memory Bus Width 192-bit 160-bit 128-bit 192-bit
VRAM 12GB 10GB 8GB 6GB
Infinity Cache 96MB 80MB 32MB N/A
TGP Range 145W+ 80 – 135W 50 – 100W 60W++
Manufacturing Process TSMC 7nm TSMC 7nm TSMC 7nm TSMC 7nm
Transistor Count 17.2B 17.2B 11.06B 10.3B
Architecture RDNA2 RDNA2 RDNA2 RDNA (1)
GPU Navi 22 Navi 22 Navi 23 Navi 10
Launch Date 06/2021 TBA 06/2021 01/2020


Overall, AMD’s mobile graphics lineup is undergoing a bit of a realignment with this generation. Whereas the 5000M series was largely a mirror of the desktop parts running at lower clockspeeds and TDPs (e.g. a Navi 10-based 5600M), the 6000M series is closer to being independently aligned. Meaning that the Radeon RX 6800M, for example, is not based on the same GPU as the desktop 6800 (Navi 21), but rather the GPU used in the 6700 XT (Navi 22). All of which ends up being a similar tack to what NVIDIA has done as well for this generation of laptop parts. Though unlike NVIDIA, having explicitly-named laptop parts means that there should be much less confusion about whether a part is desktop or laptop (and its resulting performance class).


Radeon RX 6800M


Leading the charge for AMD’s new mobile lineup is the Radeon RX 6800M. As previously noted, this is based on the Navi 22 GPU, and in many respects can be thought of as a mobilized 6700 XT. The 6800M features the same 40 CUs and 64 ROPs as the desktop card; the only thing AMD has scaled down is the clockspeeds, to more mobile-friendly values. Even then, the 6800M still ships with a game clock rating that’s well over 2GHz, making it by far the highest clocked laptop GPU we’ve ever seen.



Like its desktop counterpart, the 6800M is being paired up with 12GB of GDDR6 memory. Though according to AMD, memory speeds for the 6800M (and all other 6000M) parts are “up to” speeds. In the case of our 6800M-equipped ASUS ROG laptop, it uses 16Gbps GDDR6, so it’s being kept fully fed with regards to memory bandwidth. However, this means that it’s possible other vendors may opt for slower/lower-power 14Gbps memory. As for AMD’s Infinity Cache, that isn’t being scaled back for this part at all; the full 96MB of SRAM ships enabled on the 6800M, and remains one of AMD’s key developments for improving power efficiency.


A fully-enabled Navi 22 setup does come at a cost, though, and that’s power. The 6800M has a 145W+ TGP rating, meaning that laptop implementations will start at 145W, and they can go higher from there. According to AMD we should see 6800M laptops configured for 145W to 165W or so, which would be comparable to high-end GTX 3080 laptop configurations.


With regards to performance, AMD is pitching the 6800M as the ideal solution for 1440p gaming. And, judging from what we’ve seen with its desktop counterpart, the 6700 XT, this should be a reasonably attainable goal even with laptop clockspeeds. Though don’t be surprised if you also see 1080p displays on 6800M laptops, as well, as some OEMs will be catering to esports gamers who are looking for minimal frame times/latency.


Radeon RX 6700M


Coming in below the 6800M is the Radeon RX 6700M. This is another Navi 22-based part, however it features a cut-down configuration and slightly lower TGP to match. Overall, the 6700M comes with 36 CUs enabled, marking the first time we’ve seen a cut-down version of this GPU. AMD has not dialed down the GPU clockspeeds, however, and at its full TGP the card is rated for the same 2.3GHz game clock as the 6800M. So relative to the 6800M, on paper the 6700M can offer 90% of the former’s compute/shader throughput.



Along with cutting back on the GPU itself, the 6700M also takes a step down in memory bandwidth and capacity. Here AMD is shipping the part with a 160-bit memory bus (essentially disabling a GDDR6 memory channel), which fully-populated gives the part 10GB of GDDR6 memory. Like the 6800M, it’s “up to” 16Gbps. In which case, at equal memory clocks, that gives the 6700M 83% of the 6800M’s memory bandwidth, a bit of a bigger cut than GPU throughput, but not by too much. The story is much the same for the Infinity Cache; 6700M gets 80MB of it, so it has a bit less onboard cache to play with as well.


Versus the 6800M, AMD hasn’t significantly cut back the 6700M, and this does get reflected in the TGPs. According to AMD a full-speed 6700M is 135W, only 10 Watts lower than the 6800M. However, unlike the 6800M, this is a top-end TGP, so OEMs can (and will) also design laptops with lower TGPs (and lower resulting performance). Overall, the 6700M is expected to go into laptops in the 80-135W range, so it will encompass a pretty wide range of designs. Accordingly, we won’t be too surprised if the 6700M ends up being a more common sight than the 6800M, since it can go in a lot more than supercooled high-end gaming laptops.


Finally, dialing back the performance of the 6700M also means that its target market segment is a bit lower as well. AMD is pitching this part as straddling the line for 1440p and 1080p gaming. Realistically, high TGP configurations should come fairly close to the 6800M (which is to say, fast enough for 1440p), while lower TGP configurations may end up a better fit for very fast 1080p gaming.


Radeon RX 6600M


Last, but not least among the Radeon RX 6000M product stack is the Radeon RX 6600M, which happens to be the only part being announced today that is based on a new GPU. The lightest memory of AMD’s laptop graphics adapter lineup, the 6600M is based on the Navi 23 GPU, the next step down in AMD’s GPU stack. With 11.06B transistors and a die size of 237mm2, Navi 23 is a further scaled-back Navi 2x design, similar to the step down from Navi 21 to Navi 22.



When fully enabled, Navi 23 is a 32 CU design with a 128-bit memory bus. This is still 80% the CU count of Navi 22 and 66% of its memory bus, accordingly, which is not a particularly large drop in resources. Instead, it looks like most of AMD’s transistor and die size savings for this smaller GPU are coming from the Infinity Cache, where there’s only 32MB of the SRAM available. Compared to the 96MB that shipped on Navi 22 (and the 80MB enabled on 6700M) this is a far larger step down. It removes over 3.2 billion transistors on its own (over half of AMD’s transistor savings), making Navi 23 significantly cheaper to manufacture, but it will be very interesting to see what the real-world performance repercussions are.


In any case, the 6600M will not be shipping with a fully-enabled Navi 23 configuration. Instead, AMD is shipping it with 28 CUs, and relative to the other 6000M parts, a slightly more conservative game clock of 2177MHz for a full-TGP configuration. On paper, this puts the 6600M at around 66% of the 6700M’s shader and compute throughput.



Navi 23’s 128-bit memory bus means that memory bandwidth has been dialed down proportionally as well. The laptop graphics adapter will ship with 8GB of GDDR6 running at up to 16Gbps, which is equivalent to shaving off 20% of 6700M’s bandwidth. The greater impact to be felt will be with the Infinity Cache, which as we mentioned previously is now just 32MB. The smaller cache increases the chances that memory operations will spill over into VRAM, so Navi 23 faces a bit of a double-whammy in that regard.


Otherwise, the smallest member of the 6600M stack is also the lowest-powered member. A top-end TGP configuration is 100W, and according to AMD, laptops OEMs can turn this down as far as 50 Watts. Which means that while this part can’t go into truly thin and light laptops (few of which have room for a dGPU as it is), at lower TGPs it shouldn’t require a bulky chassis, either. Following the traditional power/cost/volume curves, if AMD is successful in carving out a bigger piece of the laptop market for itself, the 6600M will almost certainly be the most common of the 6000M parts.


As for specific performance expectations, AMD is pitching the 6600M for 1080p gaming. Until we have a chance to see 6600M in action it’s difficult to say with certainty how well the part will fill this role, but 1080p seems reasonable for the hardware configuration. The real wildcard factor here is the Infinity Cache, and how well a 32MB cache ends up working. Aiming the part at 1080p gaming will certainly keep the image buffer sizes down, but not by as much as the overall cache size has been reduced.


Features, the Competition, & Availability


Alongside their raw compute capabilities, AMD’s new mobile products also support all of the new functionality AMD introduced with the 6000 series overall. This includes Smart Access Memory, AMD’s implementation of the PCIe resizable bar. This functionality is baked into the drivers and Navi 2x hardware itself, so it comes to AMD’s mobile team essentially ready-made. However whether it will be enabled on laptops still comes down to OEMs; other than AMD Advantage certified laptops, AMD can’t guarantee whether any given 6000M laptop will have SAM available.



SmartShift support is also returning for the mobile Radeon parts. The TDP shifting feature was first introduced into AMD’s hardware in 2020, when the company rolled it out in Dell’s G5 15 SE laptop, an all-AMD laptop that combined a Radeon RX 5600M with a Ryzen 4000 series APU. The Dell system was essentially a test-run for the feature – hence being the only system to ship with it in 2020 – and now that SmartShift has proven its value, it’s being made available to the rest of the OEM ecosystem. Being able to dynamically shift TDPs between the CPU and GPU should allow AMD OEMs to squeeze out a bit more performance from their laptops. And though it requires OEMs to buy both AMD CPUs and GPUs, judging from AMD’s recent success in the laptop CPU space, that task has become a whole lot easier since a couple of years ago.


Moving on, AMD’s expected competition for the Radeon RX 6000M parts is, unsurprisingly, NVIDIA’s GeForce RTX 30 series laptop adapters. AMD simply hasn’t been seriously competitive against NVIDIA in this space for a couple of generations now, so while it’s more a return to form for AMD, it’s been a long time coming.


Since everyone is playing in the same TDP-constrained space, AMD is aiming for no less than the top here. The company believes that the 6800M can compete with the RTX 3080, for example, and while we’ll have to wait for benchmarks to see how true that is, coming off of what we’ve seen with their desktop parts, AMD has some credibility here. At the same time, these are marketing slides, so they should always be taken with a grain of salt.



The company is also touting 6800M’s performance advantage over 3080 in situations where the laptops are running on batteries. This is a slightly more unusual claim (given the short battery life, how many laptop gamers do it on battery power?), and I imagine will feed back pretty heavily into whether a given system has SmartShift/Dynamic Boost support.


But even if the 6800M can’t beat the RTX 3080, AMD is still expecting it to deliver very high performance at 1440p. This is something that, judging from the desktop 6700 XT, is entirely possible.



As for the 6600M, AMD is claiming that the 1080p-targetted GPU should have no trouble delivering 60fps (or better) in major games. I suspect this won’t extend to ray tracing-enabled games (which tend to clobber everything), but otherwise this seems quite attainable for what seems like an increasingly low-end resolution in the gaming laptop market.


Wrapping things up, according to AMD both the Radeon RX 6800M and 6600M are shipping now. We already have the 6800M in-house via ASUS’s ROG Strix G15, which AMD has sampled to the press for this launch, and that laptop will be available at retail in June. The story is apparently similar for 6600M laptops, which those laptops reaching retailers now. That leaves the 6700M as the odd chip out; that’s going to be the last part AMD ships, and they haven’t said when this will be. And prices for all of these laptops is to be determined;



As for pricing, AMD isn’t working with OEMs to have a defined pricing structure in the same way that NVIDIA does, so at this juncture we don’t have planned MSRPs or such available. Like seemingly all computer hardware this year, retail prices (and availability) may end up at the whims of a crypto-crazed market.




Source: AnandTech – AMD Announces Radeon RX 6000M Series: RDNA2 Makes Its Laptop Debut

AMD Ryzen 5000G: Zen 3 APUs for Desktop Coming August 5th

Back in April of this year, AMD announced its new series of Ryzen 5000G processors with integrated graphics. These processors were an upgrade over the previous generation of 4000G hardware by using AMD’s newest Zen 3 cores coupled with Vega 8 integrated graphics. At the time those processors were released for the pre-built system market only, with promises that retail versions would be made available later in the year. Today AMD is announcing two Ryzen 5000G models for retail, coming to market worldwide on August 5th.




Source: AnandTech – AMD Ryzen 5000G: Zen 3 APUs for Desktop Coming August 5th

Computex 2021: AMD's Keynote, a Live Blog (10pm ET)

When the big trade shows roll around, this is the time for the big companies in our sphere to announce their next biggest hardware, or update us on what is to some. AMD had some really big launches at the top of the year, with Ryzen 5000 for desktop and mobile, Radeon for desktop, and then a bit later we saw EPYC on Zen 3 come to market. This year at Computex, CEO Dr. Lisa Su heads up AMD’s keynote presentation, and we’re here ready to live blog the announcements as they come in. Join us at 10pm ET (10am Taiwan local time)!



Source: AnandTech – Computex 2021: AMD’s Keynote, a Live Blog (10pm ET)