Bringing a book to life with Raspberry Pi | Hello World #9

Sian Wheatcroft created an interactive story display to enable children to explore her picture book This Bear, That Bear. She explains the project, and her current work in teaching, in the newest issue of Hello World magazine, available now.

The task of promoting my first children’s picture book, This Bear, That Bear, was a daunting one. At the time, I wasn’t a teacher and the thought of standing in front of assembly halls and classrooms sounded terrifying. As well as reading the book to the children, I wanted to make my events interactive using physical computing, showing a creative side to coding and enabling a story to come to life in a different way than what the children would typically see, i.e. animated retellings.

The plan

Coming from a tech-loving family, I naturally gravitated towards the Raspberry Pi, and found out about Bare Conductive and their PiCap. I first envisaged using their conductive paint on the canvas, enabling users to touch the paint to interact with the piece. It would be some sort of scene from the book, bringing some of the characters to life. I soon scrapped that idea, as I discovered that simply using copper tape on the back of the canvas was conductive enough, which also allowed me to add colour to the piece.

I enlisted the help of my two sons (two and five at the time) — they gladly supplied their voices to some of the bears and, my personal favourite on the canvas, the ghost. The final design features characters from the book — when children touch certain areas of the canvas, they hear the voices of the characters.

The back of the canvas, covered in copper tape

Getting the project up and running went pretty smoothly. I do regret making the piece so large, though, as it proved difficult to transport across the country, especially on the busy London Underground!

Interactivity and props

The project added a whole other layer to the events I was taking part in. In schools, I would read the book and have props for the children to wear, allowing them to act out the book as I read aloud. The canvas then added further interaction, and it surprised me how excited the children were about it. They were also really curious and wanted to know how it worked. I enjoyed showing them the back of the canvas with all its copper tape and crocodile clips. They were amazed by the fact it was all run on the Raspberry Pi — such a tiny computer!

The front of the interactive canvas

Fast-forward a few years, and I now find myself in the classroom full-time as a newly qualified teacher. The canvas has recently moved out of the classroom cupboard into my newly developed makerspace, in the hope of a future project being born.

I teach in Year 3, so coding in Python or using the command line on Raspbian may be a little beyond my students. However, I have a keen interest in project-based learning and am hoping to incorporate a host of cross-curricular activities with my students involving the canvas.

I hope to instil a love for digital making in my students and, in turn, show senior leaders what can be done with such equipment and projects.

A literacy project

This work really lends itself to a literacy project that other educators could try. Perhaps you’re reading a picture book or a more text-based piece: why not get the students to design the canvas using characters from the story? The project would also work equally well with foundation subjects like History or Science. Children could gather information onto the canvas, explaining how something works or how something happened. The age of the children would influence the level of involvement they had in the rest of the project’s creation. The back end could be pre-made — older children could help with the copper tape and wiring, while younger children could stop at the design process.

Part of the project is getting the children to create sounds to go with their design, enabling deeper thinking about a story or topic.

It’s about a collaborative process with the teacher and students, followed by the sharing of their creation with the broader school community.

Get Hello World magazine issue 9 for free

The brand-new issue of Hello World is available right now as a free PDF download from the Hello World website.

UK-based educators can also subscribe to receive Hello World as printed magazine FOR FREE, direct to their door. And those outside the UK, educator or not, can subscribe to receive free digital issues of Hello World in their inbox on the day of their release.

Head to helloworld.raspberrypi.org to sign up today!

The post Bringing a book to life with Raspberry Pi | Hello World #9 appeared first on Raspberry Pi.



Source: Raspberry Pi – Bringing a book to life with Raspberry Pi | Hello World #9

Saving biologists’ time with Raspberry Pi

In an effort to save themselves and fellow biologists hours of time each week, Team IoHeat are currently prototyping a device that allows solutions to be heated while they are still in cold storage.

The IoHeat team didn’t provide any photos with their project writeup, so here’s a picture of a bored biologist that I found online

Saving time in the lab

As they explain in their prototype write-up:

As scientists working with living organisms (from single cells to tissue samples), we are often required to return to work outside of normal hours to maintain our specimens. In many cases, the compounds and solutions we are using in our line of work are stored at 4°C and need to reach 37°C before they can be used. So far, in order to do this we need to return to our workplace early, incubate our solutions at 37°C for 1–2h, depending on the required volume, and then use them in processes that often take a few minutes. It is clear that there is a lot of room here to improve our efficiency.

Controlling temperatures with Raspberry Pi

These hours wasted on waiting for solutions to heat up could be better spent elsewhere, so the team is building a Raspberry Pi–powered device that will allow them to control the heating process remotely.

We are aiming to built a small incubator that we can store in a cold room/fridge, and that can be activated remotely to warm up to a defined temperature. This incubator will enable us to safely store our reagents at low temperature and warm them up remotely before we need to use them, saving an estimate of 12h per week per user.

This is a great project idea, and they’ve already prototyped it using a Raspberry Pi, heating element, and fan. Temperature and humidity sensors connected to the Raspberry Pi monitor conditions inside the incubator, and the prototype can be controlled via Telegram.

Find out more about the project on Hackster.

We’ve got more than one biologist on the Raspberry Pi staff, so we have a personal appreciation for the effort behind this project, and we look forward to seeing how IoHeat progresses in the future.

The post Saving biologists’ time with Raspberry Pi appeared first on Raspberry Pi.



Source: Raspberry Pi – Saving biologists’ time with Raspberry Pi

Monitor air quality with a Raspberry Pi

Add a sensor and some Python 3 to your Raspberry Pi to keep tabs on your local air pollution, in the project taken from Hackspace magazine issue 21.

Air is the very stuff we breathe. It’s about 78% nitrogen, 21% oxygen, and 1% argon, and then there’s the assorted ‘other’ bits and pieces – many of which have been spewed out by humans and our related machinery. Carbon dioxide is obviously an important polluter for climate change, but there are other bits we should be concerned about for our health, including particulate matter. This is just really small bits of stuff, like soot and smog. They’re grouped together based on their size – the most important, from a health perspective, are those that are smaller than 2.5 microns in width (known as PM2.5), and PM10, which are between 10 and 2.5 microns in width. This pollution is linked with respiratory illness, heart disease, and lung cancer.

Obviously, this is something that’s important to know about, but it’s something that – here in the UK – we have relatively little data on. While there are official sensors in most major towns and cities, the effects can be very localised around busy roads and trapped in valleys. How does the particular make-up of your area affect your air quality? We set out to monitor our environment to see how concerned we should be about our local air.

Getting started

We picked the SDS011 sensor for our project (see ‘Picking a sensor’ below for details on why). This sends output via a binary data format on a serial port. You can read this serial connection directly if you’re using a controller with a UART, but the sensors also usually come with a USB-to-serial connector, allowing you to plug it into any modern computer and read the data.

The USB-to-serial connector makes it easy to connect the sensor to a computer

The very simplest way of using this is to connect it to a computer. You can read the sensor values with software such as DustViewerSharp. If you’re just interested in reading data occasionally, this is a perfectly fine way of using the sensor, but we want a continuous monitoring station – and we didn’t want to leave our laptop in one place, running all the time. When it comes to small, low-power boards with USB ports, there’s one that always springs to mind – the Raspberry Pi.

First, you’ll need a Raspberry Pi (any version) that’s set up with the latest version of Raspbian, connected to your local network, and ideally with SSH enabled. If you’re unsure how to do this, there’s guidance on the Raspberry Pi website.

The wiring for this project is just about the simplest we’ll ever do: connect the SDS011 to the Raspberry Pi with the serial adapter, then plug the Raspberry Pi into a power source.

Before getting started on the code, we also need to set up a data repository. You can store your data wherever you like – on the SD card, or upload it to some cloud service. We’ve opted to upload it to Adafruit IO, an online service for storing data and making dashboards. You’ll need a free account, which you can sign up for on the Adafruit IO website – you’ll need to know your Adafruit username and Adafruit IO key in order to run the code below. If you’d rather use a different service, you’ll need to adjust the code to push your data there.

We’ll use Python 3 for our code, and we need two modules – one to read the data from the SDS011 and one to push it to Adafruit IO. You can install this by entering the following commands in a terminal:

pip3 install pyserial adafruit-io

You’ll now need to open a text editor and enter the following code:

This does a few things. First, it reads ten bytes of data over the serial port – exactly ten because that’s the format that the SDS011 sends data in – and sticks these data points together to form a list of bytes that we call data.

We’re interested in bytes 2 and 3 for PM2.5 and 4 and 5 for PM10. We convert these from bytes to integer numbers with the slightly confusing line:

pmtwofive = int.from_bytes(b’’.join(data[2:4]), byteorder=’little’) / 10

from_byte command takes a string of bytes and converts them into an integer. However, we don’t have a string of bytes, we have a list of two bytes, so we first need to convert this into a string. The b’’ creates an empty string of bytes. We then use the join method of this which takes a list and joins it together using this empty string as a separator. As the empty string contains nothing, this returns a byte string that just contains our two numbers. The byte_order flag is used to denote which way around the command should read the string. We divide the result by ten, because the SDS011 returns data in units of tens of grams per metre cubed and we want the result in that format aio.send is used to push data to Adafruit IO. The first command is the feed value you want the data to go to. We used kingswoodtwofive and kingswoodten, as the sensor is based in Kingswood. You might want to choose a more geographically relevant name. You can now run your sensor with:

python3 airquality.py

…assuming you called the Python file airquality.py
and it’s saved in the same directory the terminal’s in.

At this point, everything should work and you can set about running your sensor, but as one final point, let’s set it up to start automatically when you turn the Raspberry Pi on. Enter the command:

crontab -e

…and add this line to the file:

@reboot python3 /home/pi/airquality.py

With the code and electronic setup working, your sensor will need somewhere to live. If you want it outside, it’ll need a waterproof case (but include some way for air to get in). We used a Tupperware box with a hole cut in the bottom mounted on the wall, with a USB cable carrying power out via a window. How you do it, though, is up to you.

Now let’s democratise air quality data so we can make better decisions about the places we live.

Picking a sensor

There are a variety of particulate sensors on the market. We picked the SDS011 for a couple of reasons. Firstly, it’s cheap enough for many makers to be able to buy and build with. Secondly, it’s been reasonably well studied for accuracy. Both the hackAIR and InfluencAir projects have compared the readings from these sensors with more expensive, better-tested sensors, and the results have come back favourably. You can see more details at hsmag.cc/DiYPfg and hsmag.cc/Luhisr.

The one caveat is that the results are unreliable when the humidity is at the extremes (either very high or very low). The SDS011 is only rated to work up to 70% humidity. If you’re collecting data for a study, then you should discard any readings when the humidity is above this. HackAIR has a formula for attempting to correct for this, but it’s not reliable enough to neutralise the effect completely. See their website for more details: hsmag.cc/DhKaWZ.

Safe levels

Once you’re monitoring your PM2.5 data, what should you look out for? The World Health Organisation air quality guideline stipulates that PM2.5 not exceed 10 µg/m3 annual mean, or 25 µg/m324-hour mean; and that PM10 not exceed 20 µg/m3 annual mean, or 50 µg/m3 24-hour mean. However, even these might not be safe. In 2013, a large survey published in The Lancet “found a 7% increase in mortality with each 5 micrograms per cubic metre increase in particulate matter with a diameter of 2.5 micrometres (PM2.5).”

Where to locate your sensor

Standard advice for locating your sensor is that it should be outside and four metres above ground level. That’s good advice for general environmental monitoring; however, we’re not necessarily interested in general environmental monitoring – we’re interested in knowing what we’re breathing in.

Locating your monitor near your workbench will give you an idea of what you’re actually inhaling – useless for any environmental study, but useful if you spend a lot of time in there. We found, for example, that the glue gun produced huge amounts of PM2.5, and we’ll be far more careful with ventilation when using this tool in the future.

Adafruit IO

You can use any data platform you like. We chose Adafruit IO because it’s easy to use, lets you share visualisations (in the form of dashboards) with others, and connects with IFTTT to perform actions based on values (ours tweets when the air pollution is above legal limits).

One thing to be aware of is that Adafruit IO only holds data for 30 days (on the free tier at least). If you want historical data, you’ll need to sign up for the Plus option (which stores data for 60 days), or use an alternative storage method. You can use multiple data stores if you like.

Checking accuracy

Now you’ve got your monitoring station up and running, how do you know that it’s running properly? Perhaps there’s an issue with the sensor, or perhaps there’s a problem with the code. The easiest method of calibration is to test it against an accurate sensor, and most cities here in the UK have monitoring stations as part of Defra’s Automatic Urban and Rural Monitoring Network. You can find your local station here. Many other countries have equivalent public networks. Unless there is no other option, we would caution against using crowdsourced data for calibration, as these sensors aren’t themselves calibrated.

With a USB battery pack, you can head to your local monitoring point and see if your monitor is getting similar results to the monitoring network.

HackSpace magazine #21 is out now

You can read the rest of this feature in HackSpace magazine issue 21, out today in Tesco, WHSmith, and all good independent UK newsagents.

Or you can buy HackSpace mag directly from us — worldwide delivery is available. And if you’d like to own a handy digital version of the magazine, you can also download a free PDF.

The post Monitor air quality with a Raspberry Pi appeared first on Raspberry Pi.



Source: Raspberry Pi – Monitor air quality with a Raspberry Pi

Recreate 3D Monster Maze’s 8-bit labyrinth | Wireframe issue 18

You too can recreate the techniques behind a pioneering 3D maze game in Python. Mark Vanstone explains how.

3D Monster Maze, released in 1982 by J.K. Greye software, written by Malcolm Evans.

3D Monster Maze

While 3D games have become more and more realistic, some may forget that 3D games on home computers started in the mists of time on machines like the Sinclair ZX81. One such pioneering game took pride of place in my collection of tapes, took many minutes to load, and required the 16K RAM pack expansion. That game was 3D Monster Maze — perhaps the most popular game released for the ZX81.

The game was released in 1982 by J.K. Greye Software, and written by Malcolm Evans. Although the graphics were incredibly low resolution by today’s standards, it became an instant hit. The idea of the game was to navigate around a randomly generated maze in search of the exit.

The problem was that a Tyrannosaurus rex also inhabited the maze, and would chase you down and have you for dinner if you didn’t escape quickly enough. The maze itself was made of straight corridors on a 16×18 grid, which the player would move around from one block to the next. The shape of the blocks were displayed by using the low-resolution pixels included in the ZX81’s character set, with 2×2 pixels per character on the screen.

The original ZX81 game drew its maze from chunky 2×2 pixel blocks.

Draw imaginary lines

There’s an interesting trick to recreating the original game’s 3D corridor display which, although quite limited, works well for a simplistic rendering of a maze. To do this, we need to draw imaginary lines diagonally from corner to corner in a square viewport: these are our vanishing point perspective guides. Then each corridor block in our view is half the width and half the height of the block nearer to us.

If we draw this out with lines showing the block positions, we get a view that looks like we’re looking down a long corridor with branches leading off left and right. In our Pygame Zero version of the maze, we’re going to use this wireframe as the basis for drawing our block elements. We’ll create graphics for blocks that are near the player, one block away, two, three, and four blocks away. We’ll need to view the blocks from the left-hand side, the right-hand side, and the centre.

The maze display is made by drawing diagonal lines to a central vanishing point.

Once we’ve created our block graphics, we’ll need to make some data to represent the layout of the maze. In this example, the maze is built from a 10×10 list of zeros and ones. We’ll set a starting position for the player and the direction they’re facing (0–3), then we’re all set to render a view of the maze from our player’s perspective.

The display is created from furthest away to nearest, so we look four blocks away from the player (in the direction they’re looking) and draw a block if there’s one indicated by the maze data to the left; we do the same on the right, and finally in the middle. Then we move towards the player by a block and repeat the process (with larger graphics) until we get to the block the player is on.

Each visible block is drawn from the back forward to make the player’s view of the corridors.

That’s all there is to it. To move backwards and forwards, just change the position in the grid the player’s standing on and redraw the display. To turn, change the direction the player’s looking and redraw. This technique’s obviously a little limited, and will only work with corridors viewed at 90-degree angles, but it launched a whole genre of games on home computers. It really was a big deal for many twelve-year-olds — as I was at the time — and laid the path for the vibrant, fast-moving 3D games we enjoy today.

Here’s Mark’s code, which recreates 3D Monster Maze’s network of corridors in Python. To get it running on your system, you’ll need to install Pygame Zero. And to download the full code, visit our Github repository here.

Get your copy of Wireframe issue 18

You can read more features like this one in Wireframe issue 18, available now at Tesco, WHSmith, and all good independent UK newsagents.

Or you can buy Wireframe directly from Raspberry Pi Press — delivery is available worldwide. And if you’d like a handy digital version of the magazine, you can also download issue 18 for free in PDF format.

Make sure to follow Wireframe on Twitter and Facebook for updates and exclusive offers and giveaways. Subscribe on the Wireframe website to save up to 49% compared to newsstand pricing!

The post Recreate 3D Monster Maze’s 8-bit labyrinth | Wireframe issue 18 appeared first on Raspberry Pi.



Source: Raspberry Pi – Recreate 3D Monster Maze’s 8-bit labyrinth | Wireframe issue 18

Good Buoy: the Raspberry Pi Smart Buoy

As their new YouTube video shows, the team at T3ch Flicks have been hard at work, designing and prototyping a smart buoy for marine conservation research.

Smart-Buoy Series [Summary]

We all love the seaside, right? Whether that’s the English seaside with ice creams and muddy piers or the Caribbean, with white sand beaches fringed by palm trees, people flock to the coast for a bit of rest and relaxation, to enjoy water sports or to make their livelihood.

What does a smart buoy do?

“The sensors onboard the smart buoy enable it to measure wave height, wave period, wave power, water temperature, air temperature, air pressure, voltage, current usage and GPS location,” explain T3ch Flicks on their project tutorial page. “All the data the buoy collects is sent via radio to a base station, which is a Raspberry Pi. We made a dashboard to display them using Vue JS.”

But why build a smart buoy to begin with? “The coast is a dynamic area at the mercy of waves. Rising sea levels nibble at beaches and powerful extreme events like hurricanes completely decimate them,” they go on to explain. “To understand how to save them, we need to understand the forces driving their change.”

The 3D-printed casing of the smaert buoy with tech inside

It’s a pretty big ask of a 3D-printed dome but, with the aid of an on-board Raspberry Pi, Arduino and multiple sensors, their project was a resounding success. So much so that the Grenadian government gave the team approval to set the buoy free along their coast, and even made suggestions of how the project could be improved to aid them in their own research – pretty cool, right?

The smart buoy out at sea along the Grenada coast

The project uses a lot of tech. A lot. So, instead of listing it here, why not head over to the hackster.io project page, where you’ll find all the ingredients you need to build your own smart buoy.

Good luck to the T3ch Flicks team. We look forward to seeing how the project develops.

The post Good Buoy: the Raspberry Pi Smart Buoy appeared first on Raspberry Pi.



Source: Raspberry Pi – Good Buoy: the Raspberry Pi Smart Buoy

Raspberry Pi mineral oil tank with added pizzazz

This isn’t the first mineral oil bath we’ve seen for the Raspberry Pi, but it’s definitely the first we’ve seen with added fish tank decorations.

Using the see-through casing of an old Apple PowerMac G4, Reddit user u/mjh2901 decided to build a mineral oil tank for their Raspberry Pi, and it looks fabulous. Renamed Apple Pi, this use of mineral oil is a technique used by some to manage the heat produced by tech. Oil is able to transfer heat up to five times more efficiently than air, with some mineral oil projects using a separate radiator to dissipate the heat back into the air.

So, how did they do it?

“Started with a PowerMac G4 case I previously used as a fish tank, then a candy dish. I had cut a piece of acrylic and glued it into the bottom.”


They then placed a Raspberry Pi 3 attached to a 2-line 16 character LCD into the tank, along with various decorations, and began to fill with store-bought mineral oil. Once full, the project was complete, the Raspberry Pi forever submerged.

You can find more photos here. But, one question still remains…

…who would use an old fish tank as a candy bowl?! 🤢

The post Raspberry Pi mineral oil tank with added pizzazz appeared first on Raspberry Pi.



Source: Raspberry Pi – Raspberry Pi mineral oil tank with added pizzazz

Hack your old Raspberry Pi case for the Raspberry Pi 4

Hack your existing Raspberry Pi case to fit the layout of your new Raspberry Pi 4, with this handy “How to hack your existing Raspberry Pi case to fit the layout of your new Raspberry Pi 4” video!

Hack your old Raspberry Pi case to fit your Raspberry Pi 4

Hack your existing official Raspberry Pi case to fit the new Raspberry Pi 4, or treat yourself to the new official Raspberry Pi 4 case. The decision is yours!

How to hack your official Raspberry Pi case

  1. Take your old Raspberry Pi out of its case.
  2. Spend a little time reminiscing about all the fun times you had together.
  3. Reassure your old Raspberry Pi that this isn’t the end, and that it’ll always have a special place in your heart.
  4. Remember that one particular time – you know the one; wipe a loving tear from your eye.
  5. Your old Raspberry Pi loves you. It’s always been there for you. Why are you doing this?
  6. Look at the case. Look at it. Look how well it fits your old Raspberry Pi. Those fine, smooth edges; that perfect white and red combination. The three of you – this case, your old Raspberry Pi, and you – you make such a perfect team. You’re brilliant.
  7. Look at your new Raspberry Pi 4. Yes, it’s new, and faster, and stronger, but this isn’t about all that. This is about all you’ve gone through with your old Raspberry Pi. You’re just not ready to say goodbye. Not yet.
  8. Put your buddy, the old Raspberry Pi, back in its case and set it aside. There are still projects you can work on together; this is not the end. No, not at all.
  9. In fact, why do you keep calling it your old Raspberry Pi? There’s nothing old about it. It still works; it still does the job. Sure, your Raspberry Pi 4 can do things that this one can’t, and you’re looking forward to trying them out, but that doesn’t make this one redundant. Heck, if we went around replacing older models with newer ones all the time, Grandma would be 24 years old and you’d not get any of her amazing Sunday dinners, and you do love her honey-glazed parsnips.
  10. Turn to your new Raspberry Pi 4 and introduce yourself. It’s not its fault that you’re having a temporary crisis. It hasn’t done anything wrong. So take some time to really get to know your new friend.
  11. New friendships take time, and fresh beginnings, dare we say it…deserve new cases.
  12. Locate your nearest Raspberry Pi Approved Reseller and purchase the new Raspberry Pi 4 case, designed especially to make your new Raspberry Pi comfortable and secure.
  13. Reflect that this small purchase of a new case will support the charitable work of the Raspberry Pi Foundation. Enjoy a little warm glow inside. You did good today.
  14. Turn to your old keyboard

The post Hack your old Raspberry Pi case for the Raspberry Pi 4 appeared first on Raspberry Pi.



Source: Raspberry Pi – Hack your old Raspberry Pi case for the Raspberry Pi 4

Record the last seven seconds of everything you see

Have you ever witnessed something marvellous but, by the time you get your camera out to record it, the moment has passed? ‘s Film in the Past hat-mounted camera is here to save the day!

Record the past

As 18-year-old student Johan explains, “Imagine you are walking in the street and you see a meteorite in the sky – obviously you don’t have time to take your phone to film it.” While I haven’t seen many meteorites in the sky, I have found myself wishing I’d had a camera to hand more than once in my life – usually when a friend trips over or says something ridiculous. “Fortunately after the passage of the meteorite, you just have to press a button on the hat and the camera will record the last 7 seconds”, Johan continues. “Then you can download the video from an application on your phone.”

Johan’s project, Film in the Past, consists of a Raspberry Pi 3 with USB camera attached, mounted to the peak of a baseball cap.

The camera is always on, and, at the press of a button, will save the last seven seconds of footage to the Raspberry Pi. You can then access the saved footage from an application on your smartphone. It’s a bit like the video capture function on the Xbox One or, as I like to call it, the option to record hilarious glitches during gameplay. But, unlike the Xbox One, it’s a lot easier to get the footage off the Raspberry Pi and onto your phone.

Fancy building your own? The full Python code for the project can be downloaded via GitHub, and more information can be found on Instructables and Johan’s website.

The post Record the last seven seconds of everything you see appeared first on Raspberry Pi.



Source: Raspberry Pi – Record the last seven seconds of everything you see

Snazzy photographs of Raspberry Pis #SnazzyRPi

If you don’t follow Raspberry Pi on Instagram, you really should, for there you will find #SnazzyRPi, a collection of snazzy-looking Raspberry Pi photographs taken by our very own Fiacre Muller.

Do you have a Raspberry Pi 3 A+? What have you built with it? . And how snazzy is this photo from @fiacremuller?! . . . . . #RaspberryPi #3A+ #RaspberryPi3A+ #Computing

4,412 Likes, 90 Comments – Raspberry Pi (@raspberrypifoundation) on Instagram: “Do you have a Raspberry Pi 3 A+? What have you built with it? . And how snazzy is this photo from…”

Here are a few more to whet your appetite. Enjoy.






Join the #SnazzyRPi revolution and share your Raspberry Pi glamour shots on Instagram using #SnazzyRPi

The post Snazzy photographs of Raspberry Pis #SnazzyRPi appeared first on Raspberry Pi.



Source: Raspberry Pi – Snazzy photographs of Raspberry Pis #SnazzyRPi

NASA, Raspberry Pi and a mini rover

NASA scientist Dr Jamie Molaro plans to conduct potentially ground-breaking research using a Raspberry Pi seismometer and a mini rover.

Jamie has been working on a payload-loaded version of NASA’s Open Source Rover

In the summer of 2018, engineers at NASA’s Jet Propulsion Laboratory built a mini planetary rover with the aim of letting students, hobbyists, and enthusiasts create one for themselves. It uses commercial off-the-shelf parts and has a Raspberry Pi as its brain. But despite costing about $5333 in total, the Open Source Rover Project has proven rather popular, including among people who actually work for the USA’s space agency.

One of those is Dr Jamie Molaro, a research scientist at the Planetary Science Institute. Her main focus is studying the surfaces of rocky and icy airless bodies such as comets, asteroids, and the moons orbiting Earth, Jupiter, and Saturn. So when she decided to create her mini-rover – which she dubbed PARSLEE, or Planetary Analog Remote Sensor and ‘Lil Electronic Explorer – she also sought to shake things up a little.

Brought to life

Constructing the robot itself was, she says, rather straightforward: the instructions were detailed and she was able to draw upon the help of others in a forum. Jamie also built the robot with her husband, a software engineer at Adobe. “My interest in the Open Source Rover Project was driven by my scientific background, but not my ability to build it”, she tells us, of what is essentially a miniature version of the Curiosity rover trundling over the surface of Mars.

After building the rover wheel assembly, Jamie worked on the head assembly and then the main body itself

Jamie’s interest in science led to her considering the rover’s potential payload before the couple had even finished building it. She added a GoPro camera and a Kestrel 833, which measures temperature, pressure, elevation, wind speed, and humidity. In addition, she opted to use a Raspberry Shake seismometer – a device costing a few hundred dollars which comprises a device sensor, circuit board, and digitiser – with a Raspberry Pi board and a preprogrammed microSD card.

With the electronics assembly complete, Jamie and her husband could get on with integrating PARSLEE’s parts

The sensor records activity, converts the analogue signals to digital, and allows the recorded data to be read on Raspberry Shake servers. Jamie hopes to use PARSLEE to study the kinds of processes active at the surface of other planets. A seismometer helps us understand our physical environment in a very different way than images from a camera, she says.

Seismic solutions

To that end, with funding, Jamie would like to heat and cool boulders and soils in the lab and in the field and analyse their seismic signature. Thermally driven shallow moonquakes were recorded by instruments used by the Apollo astronauts, she says. “We believe these quakes may reflect signals from a thermal fracturing process that breaks down lunar boulders, or from the boulders and surrounding soil shifting and settling as it changes temperature throughout the day. We can do experiments on Earth that mimic this process and use what we learn to help us understand the lunar seismic data.”

A Raspberry Pi processes the data recorded from the sensor and powers the whole device, with the whole unit forming a payload on PARSLEE

Jamie is also toying with optimum locations for the Shake-fitted rover. The best planetary analogue environments are usually deserts, due to the lack of moisture and low vegetation, she reveals. Places like dry lake beds, lava flows, and sand dunes all provide good challenges in terms of testing the rover’s ability to manoeuvre and collect data, as well as to try out technology being developed with and for it. One thing’s for sure, it is set to travel and potentially make a scientific breakthrough: anyone can use the rover for DIY science experiments.

Read more about PARSLEE on Jamie’s website.

The MagPi magazine #83

This article is from the brand-new issue of The MagPi, the official Raspberry Pi magazine. Buy it from all good newsagents, subscribe to pay less per issue and support our work, or download the free PDF to give it a try first.


The post NASA, Raspberry Pi and a mini rover appeared first on Raspberry Pi.



Source: Raspberry Pi – NASA, Raspberry Pi and a mini rover

How to build databases using Python and text files | Hello World #9

In Hello World issue 9, Raspberry Pi’s own Mac Bowley shares a lesson that introduces students to databases using Python and text files.

In this lesson, students create a library app for their books. This will store information about their book collection and allow them to display, manipulate, and search their collection. You will show students how to use text files in their programs that act as a database.

The project will give your students practical examples of database terminology and hands-on experience working with persistent data. It gives opportunities for students to define and gain concrete experience with key database concepts using a language they are familiar with. The script that accompanies this activity can be adapted to suit your students’ experience and competency.

This ready-to-go software project can be used alongside approaches such as PRIMM or pair programming, or as a worked example to engage your students in programming with persistent data.

What makes a database?

Start by asking the students why we need databases and what they are: do they ever feel unorganised? Life can get complicated, and there is so much to keep track of, the raw data required can be overwhelming. How can we use computing to solve this problem? If only there was a way of organising and accessing data that would let us get it out of our head. Databases are a way of organising the data we care about, so that we can easily access it and use it to make our lives easier.

Then explain that in this lesson the students will create a database, using Python and a text file. The example I show students is a personal library app that keeps track of which books I own and where I keep them. I have also run this lesson and allowed the students pick their own items to keep track of — it just involves a little more planning time at the end. Split the class up into pairs; have each of them discuss and select five pieces of data about a book (or their own item) they would like to track in a database. They should also consider which type of data each of them is. Give them five minutes to discuss and select some data to track.

Databases are organised collections of data, and this allows them to be displayed, maintained, and searched easily. Our database will have one table — effectively just like a spreadsheet table. The headings on each of the columns are the fields: the individual pieces of data we want to store about the books in our collection. The information about a single book are called its attributes and are stored together in one record, which would be a single row in our database table. To make it easier to search and sort our database, we should also select a primary key: one field that will be unique for each book. Sometimes one of the fields we are already storing works for this purpose; if not, then the database will create an ID number that it uses to uniquely identify each record.

Create a library application

Pull the class back together and ask a few groups about the data they selected to track. Make sure they have chosen appropriate data types. Ask some if they can find any of the fields that would be a primary key; the answer will most likely be no. The ISBN could work, but for our simple application, having to type in a 10- or 13-digit number just to use for an ID would be overkill. In our database, we are going to generate our own IDs.

The requirements for our database are that it can do the following things: save data to a file, read data from that file, create new books, display our full database, allow the user to enter a search term, and display a list of relevant results based on that term. We can decompose the problem into the following steps:

  • Set up our structures
  • Create a record
  • Save the data to the database file
  • Read from the database file
  • Display the database to the user
  • Allow the user to search the database
  • Display the results

Have the class log in and power up Python. If they are doing this locally, have them create a new folder to hold this project. We will be interacting with external files and so having them in the same folder avoids confusion with file locations and paths. They should then load up a new Python file. To start, download the starter file from the link provided. Each student should make a copy of this file. At first, I have them examine the code, and then get them to run it. Using concepts from PRIMM, I get them to print certain messages when a menu option is selected. This can be a great exemplar for making a menu in any application they are developing. This will be the skeleton of our database app: giving them a starter file can help ease some cognitive load from students.

Have them examine the variables and make guesses about what they are used for.

  • current_ID – a variable to count up as we create records, this will be our primary key
  • new_additions – a list to hold any new records we make while our code is running, before we save them to the file
  • filename – the name of the database file we will be using
  • fields – a list of our fields, so that our dictionaries can be aligned with our text file
  • data – a list that will hold all of the data from the database, so that we can search and display it without having to read the file every time

Create the first record

We are going to use dictionaries to store our records. They reference their elements using keys instead of indices, which fit our database fields nicely. We are going to generate our own IDs. Each of these must be unique, so a variable is needed that we can add to as we make our records. This is a user-focused application, so let’s make it so our user can input the data for the first book. The strings, in quotes, on the left of the colon, are the keys (the names of our fields) and the data on the right is the stored value, in our case whatever the user inputs in response to our appropriate prompts. We finish this part of by adding the record to the file, incrementing the current ID, and then displaying a useful feedback message to the user to say their record has been created successfully. Your students should now save their code and run it to make sure there aren’t any syntax errors.

You could make use of pair programming, with carefully selected pairs taking it in turns in the driver and navigator roles. You could also offer differing levels of scaffolding: providing some of the code and asking them to modify it based on given requirements.

How to use the code in your class

To complete the project, your students can add functionality to save their data to a CSV file, read from a database file, and allow users to search the database. The code for the whole project is available at helloworld.cc/database.

An example of the code

You may want to give your students the entire piece of code. They can investigate and modify it to their own purpose. You can also lead them through it, having them follow you as you demonstrate how an expert constructs a piece of software. I have done both to great effect. Let me know how your classes get on! Get in touch at contact@helloworld.cc

Hello World issue 9

The brand-new issue of Hello World is out today, and available right now as a free PDF download from the Hello World website.



UK-based educators can also sign up to receive Hello World as printed magazine FOR FREE, direct to their door. And those outside the UK, educator or not, can subscribe to receive new digital issues of Hello World in their inbox on the day of release.

The post How to build databases using Python and text files | Hello World #9 appeared first on Raspberry Pi.



Source: Raspberry Pi – How to build databases using Python and text files | Hello World #9

Take the Wizarding World of Harry Potter home with you

If you’ve visited the Wizarding World of Harry Potter and found yourself in possession of an interactive magic wand as a souvenir, then you’ll no doubt be wondering by now, “What do I do with it at home though?”

While the wand was great for setting off window displays at the park itself, it now sits dusty and forgotten upon a shelf. But it still has life left in it — let Jasmeet Singh show you how.

Real Working Harry Potter Wand With Computer Vision and ML

A few months back my brother visited Japan and had real wizarding experience in the Wizarding World of Harry Potter at the Universal Studios made possible through the technology of Computer Vision. At the Wizarding World of Harry Potter in Universal Studios the tourists can perform “real magic” at certain locations(where the motion capture system is installed) using specially made wands with retro-reflective beads at the tip.

How do Harry Potter interactive wands work?

The interactive displays at Universal Studios’ Wizarding World of Harry Potter have infrared cameras in place, which are ready to read the correct movements of retroflector-tipped wands. Move your wand in the right way, and the cameras will recognise your spell and set window displays in motion. Oooooo…magic!

How do I know this? Thanks to William Osman and Allen Pan, who used this Wizarding World technology to turn cheap hot dogs into their own unique wands! Those boys…

Hacking Wands at Harry Potter World

How to make your very own mostly-functional interactive wand. Please don’t ban me from Universal Studios. Links on my blog: http://www.williamosman.com/2017/12/hacking-harry-potter-wands.html Allen’s Channel: https://www.youtube.com/channel/UCVS89U86PwqzNkK2qYNbk5A Support us on Patreon: https://www.patreon.com/williamosman Website: http://www.williamosman.com/ Facebook: https://www.facebook.com/williamosmanscience/ InstaHam: https://www.instagram.com/crabsandscience/ CameraManJohn: http://www.johnwillner.com/

For his Raspberry Pi-enabled wand project, Jasmeet took that same Wizarding World concept to create a desktop storage box that opens and closes in response to the correct flicks of a wand.

A simple night vision camera can be used as our camera for motion capture as they also blast out infrared light which is not visible to humans but can be clearly seen with a camera that has no infrared filter.

So, the video stream from the camera is fed into a Raspberry Pi which has a Python program running OpenCV which is used for detecting, isolating and tracking the wand tip. Then we use SVM (Simple Vector Machine) algorithm of machine learning to recognize the pattern drawn and accordingly control the GPIOs of the raspberry pi to perform some activities.

For more information on the project, including all the code needed to get started, head over to hackster.io to find Jasmeet’s full tutorial.

The post Take the Wizarding World of Harry Potter home with you appeared first on Raspberry Pi.



Source: Raspberry Pi – Take the Wizarding World of Harry Potter home with you

Win some Raspberry Pi stickers #GimmeRaspberryPiStickers

To celebrate the launch of Raspberry Pi 4, and because it’s almost the weekend, we’re giving away some sticker packs!

For your chance to win a pack, all you have to do is leave a comment below, or comment on the Facebook post about this give-away, or tweet us with the hashtag #GimmeRaspberryPiStickers — all before midnight (BST) Monday 8 July.

Each sticker pack will contain the following stickers, plus any others I find between now and Monday, and we have 10 packs to give away.

Winners will be picked at random, and I’ll tweet who these lucky ten are on Tuesday, so keep your eyes peeled.

Good luck!

Oh, if you don’t see your comment on this post, it’s because you’re new to the blog and we haven’t approved it yet. Don’t worry, it’s there, and we’ll see it before the contest ends.

The post Win some Raspberry Pi stickers #GimmeRaspberryPiStickers appeared first on Raspberry Pi.



Source: Raspberry Pi – Win some Raspberry Pi stickers #GimmeRaspberryPiStickers

Code your own path-following Lemmings in Python | Wireframe issue 17

Learn how to create your own obedient lemmings that follow any path put in front of them. Raspberry Pi’s own Rik Cross explains how.

The original Lemmings, first released for the Amiga, quickly spread like a virus to just about every computer and console of the day.

Lemmings

Lemmings is a puzzle-platformer, created at DMA Design, and first became available for the Amiga in 1991. The aim is to guide a number of small lemming sprites to safety, navigating traps and difficult terrain along the way. Left to their own devices, the lemmings will simply follow the path in front of them, but additional ‘special powers’ given to lemmings allow them to (among other things) dig, climb, build, and block in order to create a path to freedom (or to the next level, anyway).

Code your own lemmings

I’ll show you a simple way (using Python and Pygame) in which lemmings can be made to follow the terrain in front of them. The first step is to store the level’s terrain information, which I’ve achieved by using a two-dimensional list to store the colour of each pixel in the background ‘level’ image. In my example, I’ve used the ‘Lemcraft’ tileset by Matt Hackett (of Lost Decade Games) – taken from opengameart.org – and used the Tiled software to stitch the tiles together into a level.

The algorithm we then use can be summarised as follows: check the pixels immediately below a lemming. If the colour of those pixels isn’t the same as the background colour, then the lemming is falling. In this case, move the lemming down by one pixel on the y-axis. If the lemming isn’t falling, then it’s walking. In this case, we need to see whether there is a non-ground, background-coloured pixel in front of the lemming for it to move onto.

Sprites cling to the ground below them, navigating uneven terrain, and reversing direction when they hit an impassable obstacle.

If a pixel is found in front of the lemming (determined by its direction) that is low enough to get to (i.e. lower than its climbheight), then the lemming moves forward on the x-axis by one pixel, and upwards on the y-axis to the new ground level. However, if no suitable ground is found to move onto, then the lemming reverses its direction.

The algorithm is stored as a lemming’s update() method, which is executed for each lemming, each frame of the game. The sample level.png file can be edited, or swapped for another image altogether. If using a different image, just remember to update the level’s BACKGROUND_COLOUR in your code, stored as a (red, green, blue, alpha) tuple. You may also need to increase your lemming climbheight if you want them to be able to navigate a climb of more than four pixels.

There are other things you can do to make a full Lemmings clone. You could try replacing the yellow-rectangle lemmings in my example with pixel-art sprites with their own walk cycle animation (see my article in issue #14), or you could give your lemmings some of the special powers they’ll need to get to safety, achieved by creating flags that determine how lemmings interact with the terrain around them.

Here’s Rik’s code, which gets those path-following lemmings moving about in Python. To get it running on your system, you’ll first need to install Pygame Zero. And to download the full code, go here.

Get your copy of Wireframe issue 17

You can read more features like this one in Wireframe issue 17, available now at Tesco, WHSmith, and all good independent UK newsagents.

Or you can buy Wireframe directly from Raspberry Pi Press — delivery is available worldwide. And if you’d like a handy digital version of the magazine, you can also download issue 17 for free in PDF format.

Make sure to follow Wireframe on Twitter and Facebook for updates and exclusive offers and giveaways. Subscribe on the Wireframe website to save up to 49% compared to newsstand pricing!

The post Code your own path-following Lemmings in Python | Wireframe issue 17 appeared first on Raspberry Pi.



Source: Raspberry Pi – Code your own path-following Lemmings in Python | Wireframe issue 17

Really awesome Raspberry Pi 4 X-ray radiographs

“I got my Pi in the post yesterday morning and I was desperately waiting until the end of the workday to get home and play with it! Took a few quick radiographs before I left because I had to.”

And we’re really happy that Reddit user xCP23x did. How cool are these?



“I work for a company that makes microfocus X-ray/CT systems!” xCP23x explained in their Reddit post. “Most of the images are from a 225kV system (good down to 3 microns).”

They used a Nikon XT H 225 ST: 225kV 225W X-ray source for the majority of the images. You can learn more about how the images were produced via the comments on their Reddit user page.

You can see the full Reddit post here, and more radiographs of the Raspberry Pi 4 here.

The post Really awesome Raspberry Pi 4 X-ray radiographs appeared first on Raspberry Pi.



Source: Raspberry Pi – Really awesome Raspberry Pi 4 X-ray radiographs

Your Back-to-School Bootcamp with our free online training

Are you ready FEEL THE BURN…of your heating laptop? And MAX THOSE REPS…using forever loops? Then get your programming muscles into the best shape possible with our free online training courses.

Pump up your programming skills for free

Today we are excited to announce our new online training course Programming with GUIs — now open for sign-ups on FutureLearn. To celebrate, we’ve also curated a set of courses as your personal Back-to-school Bootcamp. Sign up now to start training from Monday 29 July and throughout August!

Scratch Cat and a Python supervising teachers at an outdoor bootcamp

Your Back-to-school Bootcamp has something for beginner, intermediate, and advanced learners, and all the courses are free, thanks to support from Google.

Also keep in mind that all the courses count towards becoming certified through the National Centre for Computing Education.

Couch to 5k…lines of code

If you’re just beginning to learn about coding, the perfect place to start is Programming 101: An Introduction to Python for Educators. You’ll first get to grips with basic programming concepts by learning about the basics of Python syntax and how to interpret error messages. Then you’ll use your new coding skills to create a chatbot that asks and answers questions!

Scratch Cat and a Python doing a relay race

For Primary teachers, our course Scratch to Python: Moving from Block- to Text-based Programming is ideal. Take this course if you’ve been using Scratch and are wondering how to introduce Python to your older students.

If you’ve been programming for a while, sign up for our brand-new course Programming with GUIs — an intermediate-level course that shows you how to build your own graphical user interface (GUI) in Python. You will learn how to incorporate interactivity in your programs, discover different types of GUI features, and build your confidence to design more complex GUI-based apps in the future.

Or maybe you’d like to try Programming 101’s follow-on course Programming 102: Think Like a Computer Scientist? Take your Python skills further by learning to break down problems into smaller tasks and designing algorithms you can apply to data.

Finally, if you’re an experienced computing educator, dig into Object-oriented Programming in Python, a really fun and challenging course that helps you get to grips with OOP principles by creating a text-based adventure game in Python.

Scratch Cat and a Python supervising an outdoors sports activity

Sign-ups are open until the end of August. Now go get those gains!

Tell us about your workout routine

What will your personal coding regime look like this summer? What online courses have you enjoyed taking this year? (They don’t have to be ours!) Tell us in the comments below.

No Title

No Description

The post Your Back-to-School Bootcamp with our free online training appeared first on Raspberry Pi.



Source: Raspberry Pi – Your Back-to-School Bootcamp with our free online training

The world’s first Raspberry Pi-powered Twitter-activated jelly bean-pooping unicorn

When eight-year-old Tru challenged the Kids Invent Stuff team to build a sparkly, pooping, rainbow unicorn electric vehicle, they did exactly that. And when Kids Invent Stuff, also known as Ruth and Shawn, got in contact with Estefannie Explains it All, their unicorn ended up getting an IoT upgrade…because obviously.

You tweet and the Unicorn poops candy! | Kids Invent Stuff

We bring kids’ inventions to life and this month we teamed up with fellow youtube Estefannie (from Estefannie Explains It All https://www.youtube.com/user/estefanniegg SHE IS EPIC!) to modify Tru’s incredible sweet pooping unicorn to be activated by the internet! Featuring the AMAZING Allen Pan https://www.youtube.com/channel/UCVS89U86PwqzNkK2qYNbk5A (Thanks Allen for your filming and tweeting!)

Kids Invent Stuff

If you’re looking for an exciting, wholesome, wonderful YouTube channel suitable for the whole family, look no further than Kids Invent Stuff. Challenging kids to imagine wonderful inventions based on monthly themes, channel owners Ruth and Shawn then make these kids’ ideas a reality. Much like the Astro Pi Challenge, Kids Invent Stuff is one of those things we adults wish existed when we were kids. We’re not jealous, we’re just…OK, we’re definitely jealous.

ANYWAY, when eight-year-old Tru’s sparkly, pooping, rainbow unicorn won the channel’s ‘crazy new vehicle’ challenge, the team got to work, and the result is magical.

Riding an ELECTRIC POOPING UNICORN! | Kids Invent Stuff

We built 8-year-old Tru’s sparkly, pooping, rainbow unicorn electric vehicle and here’s what happened when we drove it for the first time and pooped out some jelly beans! A massive THANK YOU to our challenge sponsor The Big Bang Fair: https://www.thebigbangfair.co.uk The Big Bang Fair is the UK’s biggest celebration of STEM for young people!

But could a sparkly, pooping, rainbow unicorn electric vehicle ever be enough? Is anything ever enough if it’s not connected to the internet? Of course not. And that’s where Estefannie came in.

At Maker Central in Birmingham earlier this year, the two YouTube teams got together to realise their shared IoT dream.

They ran out of chairs for their panel, so Allen had to improvise

With the help of a Raspberry Pi Zero W connected to the relay built into the unicorn, the team were able to write code that combs through Twitter, looking for mentions of @mythicalpoops. A positive result triggers the Raspberry Pi to activate the relay, and the unicorn lifts its tail to shoot jelly beans at passers-by.

You can definitely tell this project was invented by an eight-year-old, and we love it!

IoT unicorn

As you can see in the video above, the IoT upgrades to the unicorn allow Twitter users to control when the mythical beast poops its jelly beans. There are rumours that the unicorn may be coming to live with us at Pi Towers, but if these turn out to be true, we’ll ensure that this function is turned off. So no tweeting the unicorn!

You know what to do

Be sure to subscribe to both Kids Invent Stuff and Estefannie Explains It All on YouTube. They’re excellent makers producing wonderful content, and we know you’ll love them.

How to milk a unicorn

The post The world’s first Raspberry Pi-powered Twitter-activated jelly bean-pooping unicorn appeared first on Raspberry Pi.



Source: Raspberry Pi – The world’s first Raspberry Pi-powered Twitter-activated jelly bean-pooping unicorn

The NEW Official Raspberry Pi Beginner’s Guide: updated for Raspberry Pi 4

To coincide with the launch of Raspberry Pi 4, Raspberry Pi Press has created a new edition of The Official Raspberry Pi Beginner’s Guide book — as if this week wasn’t exciting enough! Weighing in at 252 pages, the book is even bigger than before, and it’s fully updated for Raspberry Pi 4 and the latest version of the Raspbian operating system, Buster.A picture of the front cover of the Raspberry Pi Beginner's Guide version two

The Official Raspberry Pi Beginner’s Guide

We’ve roped in Gareth Halfacree, full-time technology journalist and technical author, and the wonderful Sam Alder, illustrator of our incredible cartoons and animations, to put together the only guide you’ll ever need to get started with Raspberry Pi.



From setting up your Raspberry Pi on day one to taking your first steps into writing coding, digital making, and computing, The Official Raspberry Beginner’s Guide – 2nd Edition is great for users from age 7 to 107! It’s available now online from the Raspberry Pi Press store, with free international delivery, or from the real-life Raspberry Pi Store in Cambridge, UK.

As always, we have also released the guide as a free PDF, and you’ll soon be seeing physical copies on the shelves of Waterstones, Foyles, and other good bookshops.

The post The NEW Official Raspberry Pi Beginner’s Guide: updated for Raspberry Pi 4 appeared first on Raspberry Pi.



Source: Raspberry Pi – The NEW Official Raspberry Pi Beginner’s Guide: updated for Raspberry Pi 4

IoT community sprinkler system using Raspberry Pi | The MagPi issue 83

Saving water, several thousand lawns at a time: The MagPi magazine takes a look at the award-winning IoT sprinkler system of Coolest Projects USA participant Adarsh Ambati.

At any Coolest Projects event, you’re bound to see incredible things built by young makers. At Coolest Projects USA, we had the chance to talk to Adarsh Ambati about his community sprinkler and we were, frankly, amazed.

“The extreme, record-breaking drought in California inspired me to think of innovative ways to save water,” Adarsh tells us. “While going to school in the rain one day, I saw one of my neighbours with their sprinklers on, creating run-offs. Through research, I found that 25% of the water used in an average American household is wasted each day due to overwatering and inefficient watering methods. Thus, I developed a sprinkler system that is compliant with water regulations, to cost-effectively save water for entire neighbourhoods using a Raspberry Pi, moisture sensors, PyOWM (weather database), and by utilising free social media networks like Twitter.”

Efficient watering

In California, it’s very hot year round, so if you want a lush, green lawn you need to keep the grass watered. The record-breaking drought Adarsh was referring to resulted in extreme limitations on how much you could water your grass. The problem is, unless you have a very expensive sprinkler system, it’s easy to water the grass when it doesn’t need to be.

“The goal of my project is to save water wasted during general-purpose landscape irrigation of an entire neighbourhood by building a moisture sensor-based smart sprinkler system that integrates real-time weather forecast data to provide only optimum levels of water required,” Adarsh explains. “It will also have Twitter capabilities that will be able to publish information about when and how long to turn on the sprinklers, through the social networks. The residents in the community will subscribe to this information by following an account on Twitter, and utilise it to prevent water wasted during general-purpose landscaping and stay compliant with water regulations imposed in each area.”

Using the Raspberry Pi, Adarsh was able to build a prototype for about $50 — a lot cheaper than smart sprinklers you can currently buy on the market.

“I piloted it with ten homes, so the cost per home is around $5,” he reveals. “But since it has the potential to serve an entire community, the cost per home can be a few cents. For example, there are about 37000 residents in Almaden Valley, San Jose (where I live). If there is an average of two to four residents per home, there should be 9250 to 18500 homes. If I strategically place ten such prototypes, the cost per house would be five cents or less.”

Massive saving

Adarsh continues, “Based on two months of data, 83% of the water used for outdoor landscape watering can be saved. The average household in northern California uses 100 gallons of water for outdoor landscaping on a daily basis. The ten homes in my pilot had the potential to save roughly 50000 gallons over a two-month period, or 2500 gallons per month per home. At $0.007 per gallon, the savings equate to $209 per year, per home. For Almaden Valley alone, we have the potential to save around $2m to $4m per year!”

The results from Adarsh’s test were presented to the San Jose City Council, and they were so impressed they’re now considering putting similar systems in their public grass areas. Oh, and he also won the Hardware project category at Coolest Projects USA.

The MagPi magazine #83

This article is from today’s brand-new issue of The MagPi, the official Raspberry Pi magazine. Buy it from all good newsagents, subscribe to pay less per issue and support our work, or download the free PDF to give it a try first.

The post IoT community sprinkler system using Raspberry Pi | The MagPi issue 83 appeared first on Raspberry Pi.



Source: Raspberry Pi – IoT community sprinkler system using Raspberry Pi | The MagPi issue 83

Raspberry Pi 4: 48 hours later

“We’ve never felt more betrayed and excited at the same time,” admitted YouTubers 8 Bits and a Byte when I told them Raspberry Pi 4 would be out in June, going against rumours of the release happening at some point in 2020. Fortunately, everything worked in our favour, and we were able to get our new product out ahead of schedule.

So, while we calm down from the hype of Monday, here’s some great third-party content for you to get your teeth into.

YouTubers

A select few online content creators were allowed to get their hands on Raspberry Pi 4 before its release date, and they published some rather wonderful videos on the big day.

Office favourite Explaining Computers provided viewers with a brilliant explanation of the ins and outs of Raspberry Pi 4, and even broke their usually Sunday-only release schedule to get the video out to fans for launch day. Thanks, Chris!

Raspberry Pi 4 Model B

Raspberry Pi 4B review, including the hardware specs of this new single board computer, and a demo running the latest version of Raspbian. With thanks to the Raspberry Pi Foundation for supplying the board featured in this video.

Blitz City DIY offered viewers a great benchmark test breakdown, delving deeper into the numbers and what they mean, to show the power increase compared to Raspberry Pi 3B+.

A Wild Raspberry Pi 4 Appears: Hardware Specs, Benchmarks & First Impressions

The Raspberry Pi 4 B has been released into the wild much earlier than anticipated. I was able to receive a review sample so here are the hardware specs, some benchmarks comparing it to the Pi 3 B and Pi 3 B+ and finally some first impressions.

Curious about how these creators were able to get their hands on Raspberry Pi 4 prior to its release? This is legitimately how Estefannie bagged herself the computer pre-launch. Honest.

HOW I GOT A RASPBERRY PI 4 BEFORE ITS RELEASE

I needed a new Raspberry Pi. FIND ME HERE: * http://www.estefannie.com * http://instagram.com/estefanniegg * http://www.twitter.com/estefanniegg * https://github.com/estefanniegg * https://facebook.com/estefanniegg

For their launch day video, Dane and Nicole, AKA 8 Bits and a Byte, built a pi-calculating pie that prints pies using a Raspberry Pi 4. Delicious.

The new Raspberry Pi 4 – Highlights & Celebration Project!

There’s a new Raspberry Pi, the Raspberry Pi 4! We give you a quick overview and build a project to welcome the Raspberry Pi 4 to the world!

Alex from Low Spec Gamer took his Raspberry Pi 4 home with him after visiting the office to talk to Eben. Annoyingly, I was away on vacation and didn’t get to meet him 🙁

Raspberry Pi 4 Hands-on. I got an early unit!

Watch the best documentaries on Curiosity Stream: https://curiositystream.com/lowspecgamer #RaspberryPi4 #HandsOn #Preview A new Raspberry Pi joins the fray. I got an early Raspberry Pi 4 and decided to explore some of its differences with Eben Upton, founder of Raspberry Pi. All benchmarks run on an early version of the new raspbian.

The MagPi magazine managed to collar Raspberry Pi Trading’s COO James Adams for their video, filmed at the Raspberry Pi Store in Cambridge.

Introducing Raspberry Pi 4! + interview with a Raspberry Pi engineer

The brand new Raspberry Pi 4 is here! With up to 4GB of RAM, 4K HDMI video, Gigabit Ethernet, USB 3.0, and USB C, it is the ultimate Raspberry Pi. We talk to Raspberry Pi hardware lead James Adams about its amazing performance.

Some rather lovely articles

If you’re looking to read more about Raspberry Pi 4 and don’t know where to start, here are a few tasty treats to get you going:

Raspberry Pi 4 isn’t the only new thing to arrive this week. Raspbian Buster is now available for Raspberry Pi, and you can read more about it here.

Join the Raspberry Pi 4 conversation by using #RaspberryPi4 across all social platforms, and let us know what you plan to do with your new Raspberry Pi.

The post Raspberry Pi 4: 48 hours later appeared first on Raspberry Pi.



Source: Raspberry Pi – Raspberry Pi 4: 48 hours later