Build your own Solo: A Star Wars Story L3-37 droid

It is a truth universally acknowledged…that everyone wants their own Star Wars droid. If you’re now thinking “No, not me!”, then you obviously haven’t met the right droid yet. But Patrick ‘PatchBOTS‘ Stefanski has, and that droid is L3-37 from the newly released Solo: A Star Wars Story.

Release the droids

Visit your local maker event, such as Maker Faire, and you’re sure to meet at least one droid builder. Building a Star Wars droid is pretty much every maker’s dream, and YouTube droid-building sensation Patrick Stefanski is living that dream. On his Youtube channel PatchBOTS, Patrick is showcasing his maker chops with truly impressive recreations of characters such as BB-8 and our personal favourite, Chopper from Star Wars Rebels.

L3-37

Patrick’s new L3-37 build uses the free Alexa Voice Service and a Raspberry Pi 3 to augment a 3D-printed base model with robotics and AI.

Solo Star Wars Story L3-37 droid PatchBOTs

He designed L3-37’s head based on press images and trailers, and then adjusted some of the visual aesthetic after watching the movie. When he realised that the Amazon Echo Dot he’d started the build with wouldn’t allow him to implement some of the features he had planned, including a unique wake word, Patrick decided to use a Raspberry Pi instead.

Solo Star Wars Story L3-37 droid PatchBOTs

A wake word is the word a home assistant uses to recognise that you’re addressing it. For Amazon Alexa, the standard wake words are ‘Alexa’, ‘Echo’, ‘Amazon’, and ‘computer’. While these are fine for standard daily use, Patrick wanted his droid to acknowledge its own name, L3-37. He also wanted to make L3-37 react with a voice response and movement whenever it heard its name. Using the Raspberry Pi enabled him to edit the home assistant code to include these functionalities, and in this way he made L3-37 truly come to life.

Build your own L3-37 home assistant

If you’d like to build your own L3-37 (and why wouldn’t you), Patrick is in the process of adding the complete set of instructions and code to his Github account. The 3D printer files are available now to get you started, along with the list of ingredients for the build, including servos, NeoPixels, and every propmaker’s staple: Rub n Buff.

If you want buy the parts for this project, why not use the affiliate links Patrick provides in the L3-37 video description to help him fund future projects? And while you’re there, leave a comment to show him some love for this incredible droid build, and also subscribe to his channel to see what he comes up with next.

Solo Star Wars Story L3-37 droid

We’re definitely going to be taking some of the lessons learned in this project to work on our own builds, and we hope you’ll do the same and share your work with us via social media.

The post Build your own Solo: A Star Wars Story L3-37 droid appeared first on Raspberry Pi.



Source: Raspberry Pi – Build your own Solo: A Star Wars Story L3-37 droid

Look who’s coming to Raspberry Fields 2018!

For those that don’t yet know, Raspberry Fields is the all-new community festival of digital making we’re hosting in Cambridge, UK on 30 June and 1 July 2018!

Raspberry Pi two-day digital making event Raspberry Fields

It will be a chance for people of all ages and skill levels to have a go at getting creative with tech! Raspberry Fields is a celebration of all that our digital makers have already learnt and achieved, whether through taking part in Code Clubs, CoderDojos, or Raspberry Jams, or through trying our resources at home.

We have a packed festival programme of exciting activities, talks, and shows for you to experience! So clear the weekend of 30 June and 1 July, because you won’t want to miss a thing.

Saturday

On Saturday, we’ll be welcoming two very special acts to the Raspberry Fields stage.

Neil Monterio

Neil Monterio - Raspberry Fields

Originally trained as a physicist, Neil is famous for his live shows exploring the power of scientific thinking and how it helps us tell the difference between the real and the impossible.

Ada.Ada.Ada

AdaAdaAda - Raspberry Fields

The spellbinding interactive show about computing pioneer Ada Lovelace — catch a sneak peek here!

Sunday

On Sunday, “Science Museum meets Top Gear” as Brainiac Live! takes to the stage to close Raspberry Fields in style.

Brainiac Live!

Brainiac Live! - Raspberry Fields

Strap on your safety goggles — due to popular demand science’s greatest and most volatile live show arrives with a vengeance. The West End and international touring favourite is coming to Raspberry Fields!

More mischievous than ever before, Brainiac Live! will take you on a breathless ride through the wild world of the weird and wonderful. Watch from the safety of your seat as the Brainiacs fearlessly delve into the mysteries of science and do all those things on stage that you’re too scared to do at home!

Weekend highlights

And that’s not all — we’ll also be welcoming some very special guests who will display their projects throughout the weekend. These include:

The Cauldron

The Cauldron - Raspberry Fields

Brew potions with molecular mixology and responsive magic wands using science and technology, and bring the magic from fantasy books to life in this immersive, interactive experience! Learn more about The Cauldron here.

The mechanical Umbrella Tree

The Umbrella Tree - Raspberry Fields

The Umbrella Tree is a botanical, mechanical contraption designed to bemuse, baffle, delight, and amuse all ages. Audiences discover it in the landscape singing to itself and dancing its strange mechanical ballet. The four-metre high structure weaves a creaky choreography of mechanically operated umbrellas, lights, and smoke.

Museum in a Box

Artefacts in the classroom with Museum in a Box || Raspberry Pi Stories

Museum in a Box bridges the gap between museums and schools by creating a more hands-on approach to conservation education through 3D printing and digital making.

Museum in a Box puts museum collections and expert knowledge into your hands, wherever you are in the world. It’s an intriguing and interactive mix of replica objects and contextual content from museum curators and educators, directly at the tips of your fingers!

And there’s still more to discover

Alongside these exciting and explosive performances and displays, we’ll be hosting loads of amazing projects and hands-on activities built by our awesome community of young people and enthusiasts, as well as licensed resellers for you to get all the latest kit and gadgets!

If you’re wondering about bringing along young children or less technologically minded family members or friends, there’ll be plenty for them to enjoy — with lots of festival-themed activities such as face painting, fun performances, free giveaways, and delicious food, Raspberry Fields will have something for everyone!

Tickets!

Tickets are selling fast, so don’t miss out — buy your tickets here today!

Fancy helping out? Find out about our volunteering opportunities.

The post Look who’s coming to Raspberry Fields 2018! appeared first on Raspberry Pi.



Source: Raspberry Pi – Look who’s coming to Raspberry Fields 2018!

Build your own Arthur satellite dish for tracking the ISS

Construct a 3D paper model of the iconic Arthur satellite dish that notifies you whenever the International Space Station passes overhead!

Project_Arthur

Project_Arthur is a fun project allowing you to construct a 3d paper model of the Antenna 1 dish called Arthur from Goonhilly. The model will track the location of the ISS (International Space Station) using an embedded Raspberry PI and notify you when it is over your chosen location!

The Arthur satellite dish at Goonhilly Earth Satellite Station

Based in Cornwall, UK, the Goonhilly Earth Satellite Station was once the largest satellite earth station in the world. It has been home to more than 60 dishes since its first dish, Arthur, was built in 1962.

Arthur satellite dish

Arthur is responsible for bringing many iconic moments in television history to the UK. For example, it transmitted man’s first steps on the moon on 11 June 1962. Since then, it’s become a protected Grade II listed structure.

Project Arthur

Apollo 50’s Project Arthur is an open-source 3D papercraft project that allows you to build your own desktop Arthur satellite dish model, complete with LED notifications via a Raspberry Pi Zero W.

The entire body of the satellite dish is built using ten sheets of 160gsm cardstock, printed with the Arthur design that you can download for free from the Project Arthur website. A Raspberry Pi Zero W fits within the base of the model, and you can push a small LED through the feedhorn — the bit that sticks out the front of the dish.

Arthur satellite dish - raspberry pi iss indicator

The Apollo 50 team created a simple IFTTT web applet that accesses an API to find out the location of the International Space Station (ISS).

The project uses a conditional web applet that we created on the IFTTT (If This Then That) platform. The applet monitors an API via NASA and Open Notify that we give a specific location on Earth (such as your home/school). It computes whether the ISS is overhead, and in that case sends a tweet to you with a particular hashtag (such as #ISS_overGoonhilly). When this hashtag is picked up by the code running on the Pi, the LED will flash to indicate that the ISS is overhead!

Raspberry Pi and the International Space Station

Our two Astro Pi units, Ed and Izzy, are currently aboard the International Space Station as part of the ongoing Astro Pi Challenge we’re running in partnership with the European Space Agency (ESA). The Astro Pi units consist of a Raspberry Pi 1 Model B+ and a Sense HAT inside a 6063-grade aluminium flight case, and they allow school children from all ESA member countries to write code to run experiments in space. You can learn more about the Astro Pi Challenge here.

Astro Pi in space - Arthur satellite dish

If you’d like to try out more space-themed Pi projects, our free project resources include ‘People in space’ indicator — a handy LED-packed gadget for checking how many people (that we know of 👽) are currently in space.

Raspberry Pi ISS People in Space indicator - Arthur satellite dish

There are many more free resources on our projects site, including our own take on an ISS tracker, and the files to print your own Astro Pi case. And you can learn more about papercraft in issue 6 of HackSpace magazine, our monthly maker publication available in print and as a free PDF download that makes a sneaky appearance in the Project Arthur video!

The post Build your own Arthur satellite dish for tracking the ISS appeared first on Raspberry Pi.



Source: Raspberry Pi – Build your own Arthur satellite dish for tracking the ISS

Archimedes, the Google AIY Projects Vision familiar

hackster.io‘s ‘resident hardware nerd’ Alex Glow has gifted the world of makers with Archimedes, a shoulder-mounted owl that judges your emotions using the Google AIY Project Vision Kit.

Say Hi to Archimedes – the AI Robot Owl

Say hi to Archimedes – the robot owl with a Google AIY brain. Built with Raspberry Pi + Arduino! Here are some insights into pitfalls of the build process. I made this li’l guy to demo the AIY Vision Kit for Maker Faire 2018… but he’s not going away anytime soon!

Google AIY Project Kits

Google released the Pi-powered AIY Projects Voice Kit last year, providing the entire set of build ingredients with issue 57 of The MagPi Magazine. You loved it, we loved it, and later that year they followed up the Voice Kit’s success with the Vision Kit, also based on the Raspberry Pi.

google aiy vision kit

As the name indicates, the Voice Kit completes tasks in response to voice commands, just like Amazon Alexa or Google Home. The Vision Kit allows makers to experiment with neural networking to implement image recognition in their projects.

Planning for Maker Faire

When the hackster.io team was asked to contribute a project to Google’s stand at Maker Faire Bay Area this year, their in-house self-confessed hardware and robotics nerd Alex Glow took on the challenge.

I took a really, really long time to figure out what to build — what it would look like, how it would animate, how it would dispense the stickers…in the end, I went with this cute and fairly challenging design.

And so, Alex brought Archimedes the robotic owl into the world — and the world is a cuter place for it.

Archimedes the owl

Having set up the Google AIY Vision Kit — you can find Alex’s live build video here — she raided a HackerBox for a pan/tilt gimble. The gimble was far more robust than simple servos, and since Alex wanted to bring Archimedes to more events after Maker Faire, she needed something that would take the wear and tear.

it’ll be fun trying to explain this one // i tried: bit.ly/robotowl

337 Likes, 18 Comments – Alex Glow (@glowascii) on Instagram: “it’ll be fun trying to explain this one // i tried: bit.ly/robotowl”

For Maker Faire, she modified Archimedes to be a shoulder-mounted familiar, but Alex initially mounted him on a box that would open to reveal a prize if Archimedes detected a certain facial expression. For this, she introduced an Arduino into the mix, using the board to control three servos: two for the gimble and the third for the box lid.

Archimedes’s main objective is to hunt out faces and read their expressions. Because of this, his head is always moving so he can take in his surroundings like a real owl.

I combined the AIY Kit’s LED and Joy Detection demos (found in /gpiozero and /joy, respectively). I wanted to make the LED pin turn on when it finds a happy face, but weirdly, this code does the opposite. Someday, I will be enough of a software wizard to figure out why…

Alex designed the owl’s body using OnShape, with the intention of keeping the Raspberry Pi and AIY tech inside. Then she 3D printed the body using the Lulzbot Taz 6 and very hackster-blue filament.

Shawn Hymel on Twitter

Testing out @glowascii ‘s familiar, Archimedes. It knows when I’m sad or happy, but I have to *really* force that happy 😅 #aiy #computervision #ai #3dprinting https://t.co/77pQk9pOHm

Build your own robot familiar

For full instructions on building and coding your own Archimedes, head to Alex’s hackster.io project page. You can keep up to date on the pair’s adventures via Alex’s Twitter account.

The post Archimedes, the Google AIY Projects Vision familiar appeared first on Raspberry Pi.



Source: Raspberry Pi – Archimedes, the Google AIY Projects Vision familiar

Bell Gardens’ Code Club is headed to Coolest Projects North America

Located outside Los Angeles, the Boys & Girls Club of Bell Gardens run after-school and summer programming for youth in the community. The club at Bell Gardens is part of the Boys & Girls Clubs of America, a national organization of local chapters that offer after-school programs for young people. In September, their Code Club members will be heading to Coolest Projects North America to share their coding projects and connect with other young coders.

Two girls with backpacks reading about a Raspberry Pi project — Boys & Girls Club

Boys & Girls Club of Bell Gardens

At Bell Gardens’ Boys & Girls Club, activities center around healthy living and homework support, in addition to opportunities for kids to practice good character and citizenship, and to explore the arts and technology. But, as we know, rapid changes in technology mean needing to always be on the lookout for updated and kid-friendly materials. Therefore, Loren and her Boys & Girls Club team wanted to find resources that expose their kids to technology and empower them to contribute to society, to solve problems, or to simply get creative.

Code Club Bell Gardens

Loren found that Code Club, the Raspberry Pi Foundation’s longest-running outreach program, has just the resources and online project platform they needed to really level up their digital tech program. Code Club resources, like all resources provided Raspberry Pi, are user-friendly, accessible, and always free.

A boy at a laptop coding in Scratch — Boys & Girls Club

Now, just two short months since their first session, the on-site Code Club at Bell Gardens has grown exponentially and become a favourite of the community. At 20 members and growing, their Code Club is composed entirely of members from the Bell Gardens community, serving kids from 6 to 15. The club runs at least once a week, and Loren hopes to run it more often due to its positive effects. She says:

I’ve seen a lot of internal and external growth in each member. I can honestly say that all the members have been impacted by the exposure to new resources and opportunities. Not only has their self-confidence improved, so have their skills in critical thinking, coding, and math.

Loren admits that the first day of Code Club started off as challenging. “Many of the youngest members faced significant learning difficulties pertaining to literacy and math. However, many of them happily surprised our staff with their ability to memorize the projects steps along with the symbols on the screen. After a two-hour session, most members were able to complete their projects without any assistance!”

Two children holding up Code Club stickers — Boys & Girls Club

The club members come from diverse backgrounds, so Loren is thoughtful about creating a team culture while supporting individual development. As a team, they focus on two objectives: passion and innovation. “Members are constantly seeking solutions to their own questions and challenges. They thrive on inspiration and motivation, which in my opinion is the finest way to be a catalyst in the technological age.”

Bell Gardens heads to Coolest Projects

With Coolest Projects North America coming in September, Bell Gardens’ Code Club members are working on projects over the summer to prepare for the big event. Loren is already looking forward to the showcase: “I am thrilled to bring our club to Coolest Projects because it’s a unique opportunity for the community! Our community has an overwhelming lack of resources, especially concerning education, so I am looking forward to introducing our members to an innovative, competitive environment, but most of all to inspire them to select a project they can feel passionate about.”

Coolest Projects North America

Coolest Projects North America will take place at the Discovery Cube, Orange County, on September 23, 2018.

Coolest Projects UK 2018 Raspberry Pi Foundation CoderDojo
Coolest Projects UK 2018 Raspberry Pi Foundation CoderDojo
Coolest Projects UK 2018 Raspberry Pi Foundation CoderDojo
Coolest Projects UK 2018 Raspberry Pi Foundation CoderDojo

All levels of coders are welcome, and all types of projects are encouraged! Find tickets to the the event, register your project, and learn about travel stipends on the Coolest Projects North America website.

The post Bell Gardens’ Code Club is headed to Coolest Projects North America appeared first on Raspberry Pi.



Source: Raspberry Pi – Bell Gardens’ Code Club is headed to Coolest Projects North America

Gliding to earth with the Raspberry Pi Zero

RaptorTech’s goal was to drop a glider from the edge of space, and with a Raspberry Pi and a high-altitude weather balloon, their vision became a reality.

Dropping a glider from 10km with a high-altitude weather balloon

The goal of this project was to drop a glider from the edge of space using a high altitude weather balloon. The glider is entirely homemade and uses the opensource Pixhawk flight controller + a Raspberry Pi Zero to disconnect at the desired altitude and fly to a predetermined landing location.

High-altitude ballooning

Here at Pi Towers, we thoroughly enjoy the link between high-altitude balloon (HAB) enthusiasts and the Raspberry Pi community, from Dave Akerman‘s first attempt at sending a Raspberry Pi to near-space, to our own Skycademy programme training educators in high-altitude ballooning. HABs and the Pi go together like the macaroni and cheese, peanut butter and jelly, chips and gravy…you get the idea.

The RaptorTech glider

The RaptorTech team equipped their glider with a Pixhawk flight controller and the small $5 Raspberry Pi Zero to control the time point when the glider disconnects from the HAB, and to allow the glider to autonomously navigate back to a specific landing site.

RaptorTech high-altitude balloon Raspberry Pi Zero glider

They made the glider out of foam core and coroplast, with a covering of tape to waterproof the body. Inside it were two cameras, two servos, the Raspberry Pi Zero, and the Pixhawk flight controller with added GPS tracker (in case the glider got lost on the way home). The electronics were protected by handwarmers from freezing at high altitude.

The Raspberry Pi Zero ran a Python script to control the Pixhawk. At take-off, the Zero set the controller into manual mode to keep the glider from trying to fly off toward its final destination. When the glider reached a pre-determined altitude, the Zero disconnected the glider from the HAB by setting off a solid state relay to burn through the connecting wire. Then the Pi started up the flight controller to direct the glider home. You can find the code for this process here.

All systems go

Due to time limitations and weather restrictions, the RaptorTech team had to drop their glider from 10km instead of 30km as they’d planned. They were pleased to report the safe, successful return of their glider to about 10m from the pre-set landing point.

RaptorTech high-altitude balloon Raspberry Pi Zero glider

If you’d like to follow the adventures of RaptorTech, check out their Facebook page. You can also follow them on YouTube and on their website for more RC plane-based mayhem.

A note from Dave Akerman: “It’s worth pointing out that not only do all HAB flights need permission but that such permission would normally ONLY be for payloads being dropped by parachute. Free-flying gliders, planes, drones etc. are not allowed with specific permission. My understanding, from a HABber in the USA (where this flight was), is that the FAA will not provide such permission. In any case, before dropping anything from a HAB without a parachute, get specific permission first.”

The post Gliding to earth with the Raspberry Pi Zero appeared first on Raspberry Pi.



Source: Raspberry Pi – Gliding to earth with the Raspberry Pi Zero

Tackling Neonatal Abstinence Syndrome with Fesentience

In today’s guest post, we’ll hear from Prastik Mohanraj. He’s a part of the Fesentience project team at the Engineering and Science University Magnet school (ESUMS) in Connecticut, USA, and a student of Raspberry Pi Certified Educator Leon Tynes. Prastik shares his story of creating an incubator device using the Raspberry Pi to help young infants suffering from Neonatal Abstinence Syndrome (NAS).

Fesentience – Our Product

Booth video displayed at Mini EXPO. Turn subtitles on when displaying.

Fesentience

Our project, called Fesentience, is to create a device that uses the principles of biomimicry to simulate the maternal womb. By integrating Raspberry Pi and Python programming, we can design a product that houses various systems mimicking the maternal womb, with parameters such as a mother’s specific resting heart rate and blood pressure that we can set via code.

Fesentience Raspberry Pi Neonatal Abstinence Syndrome infant incubator

The product is targeted towards infants suffering from a condition called Neonatal Abstinence Syndrome, or NAS. Newborn infants exhibit NAS if they were exposed to addictive drugs while in the womb. Infants with NAS suffer from withdrawal effects, which can be extremely devastating since they may hinder essential post-birth developmental processes. This may lead to the onset of conditions such as Sudden Infant Death Syndrome, where the infant dies without any prior physiological indicators.

Neonatal Abstinence Syndrome treatment

Current treatments for NAS include providing kangaroo care, which is a form of touch contact for the infant; weaning infants off drugs slowly by using morphine, fentanyl, or other replacement compounds; and simply housing them in incubator cribs. However, none of these treatments approach NAS in what is scientifically shown to be the best way: providing persistent maternal involvement, or having the mother directly in contact with the infant for prolonged periods of time. The problem with such maternal involvement, though, is that in many cases, it is simply not possible for the mother to be with the infant.

NAS and Raspberry Pi

We made Fesentience to address this difficulty and act as a substitute for the mother. Our incubator device mimics the various biological systems of the mother according to parameters unique to each mother. Hence, our product can fully mimic any particular infant’s mother during its treatment.

Fesentience Raspberry Pi Neonatal Abstinence Syndrome infant incubator

The prototype includes a light system that can display various shades of light; we chose shades of blue light to prevent the occurrence of jaundice in infants being treated. The product also includes a vibration motor to vibrate in a pattern mimicking the mother’s heartbeat; a balloon that inflates and deflates through the use of vacuum pumps to simulate the mother’s respiration; and a speaker to play the mother’s voice in the form of lullabies or songs for the infant. We are planning on adding a thermal system that sets the temperature of the device to the mother’s resting body temperature and modulates it in accordance to physiological temperature fluctuations. These systems are set up so that the infant can clearly sense their outputs and feel like its own mother is directly next to it.

Fesentience Raspberry Pi infant incubator

The final Fesentience product we will develop is a set of appendages to be fitted onto an incubator; we may possibly designing our own incubator housing these appendages in the future. We used the Raspberry Pi microcomputer and Python programming to control Fesentience.

Fesentience Raspberry Pi Neonatal Abstinence Syndrome infant incubator

Many stages of this project were difficult. First, we had to learn the details of NAS by reading numerous scientific papers and conducting interviews with experts. The most difficult part was designing the algorithms for the device, and figuring out how the device would mimic various biological features within a secure and compact system. We had to understand how the features would interact, and how they should physically be placed inside our final device to let the infants become imbued by these sensory stimuli as much as possible. Once our first prototype of Fesentience is done, we will market it to our community and to provide it to hospitals and treatment facilities for infants suffering from NAS and related conditions to make a positive impact in the medical world.

To learn more about the Fesentience project, check out their webpage.

The post Tackling Neonatal Abstinence Syndrome with Fesentience appeared first on Raspberry Pi.



Source: Raspberry Pi – Tackling Neonatal Abstinence Syndrome with Fesentience

Coolest Projects International 2018

Like many engineers, I have folder upon folder of half-completed projects on my computer. But the funny thing is that this wasn’t a problem for me as a child. Every other Friday evening, I’d spend two hours at Ilkley Computer Club, where I could show off whatever I’d been working on: nothing motivates you to actually finish a project like the opportunity to share it with an audience.




Raspberry Jams, Code Clubs, and CoderDojos all provide children (of all ages: we’re looking at you, Peter Onion) with a place where they can learn, share ideas, and make cool stuff with code and computers. But you can get so involved with the things you’re working on that you forget to take a step back every once in a while to look at what you’ve accomplished. And what do you do when you’ve shown your project to everyone you know, and you fancy a shot at a slightly larger audience?

Enter Coolest Projects International, now in its seventh year. Here’s a video that captures about 1% of the awesomeness of being there in person.

Celebrating Coolest Projects International 2018

Coolest Projects is a world-leading showcase that empowers and inspires the next generation of digital creators, innovators, changemakers, and entrepreneurs. This year, for the first time, we brought Coolest Projects to the UK for a spectacular regional event in London!

Coolest Projects brings Ninjas from CoderDojos across the globe together in Dublin for a chance to share their work with the world, and to compete to be coolest in one of several categories:

  • Scratch projects
  • Websites
  • Games
  • Mobile apps
  • Hardware
  • Evolution (basically, next-level stuff)

At this year’s event, more than 1000 children presented projects, from 15 countries including Argentina, Bulgaria, Italy, Japan, Romania, and Spain.

Raspberry Pi on Twitter

This is it! #CoolestProjects https://t.co/eoepjNWLsC

And for the first time, Coolest Projects was open to Raspberry Jam and Code Club members, and to the broader Raspberry Pi community.

Liz, our daughter Aphra, and I spent the day at the event, along with the CoderDojo team, what felt like half the Raspberry Pi Foundation, keynote speaker Pete Lomas, and the most amazing army of volunteers. Between chugging slushies, I had the opportunity to judge hardware projects with Noel King, CoderDojo volunteer and co-founder of Coolest Projects. Noel provided the judges with a pep talk at the start of the day. He reminded us that the aim wasn’t necessarily to find the most complete, or polished, or technically audacious project, but to seek out creativity: the project that does something unique, or does something you’ve seen before but in a unique way.




To my mind, the focus on creativity is what sets Coolest Projects apart. This is, after all, a contest that aims to “empower and inspire the next generation of digital creators, innovators, changemakers, and entrepreneurs”, and that recognises that each of those activities is, at heart, a creative pursuit.

Unsurprisingly, given the strength of the field, judging went on for some time. Each category’s winner and runner-up were exceptional, and there were countless other projects that didn’t quite make the cut but that I’d be proud to have made myself. Where were these folks when I was a teenager?

You can see the winners and runners up in each category on the Coolest Projects Twitter feed, and you should also check out the winners of the six special prizes. One that especially struck me was Selin Alara Ornek’s project, iC4U, a robot guide dog that she developed at her local CoderDojo in Turkey.

While Coolest Projects started in Dublin, it’s now an international phenomenon. In the last couple of months we’ve seen Coolest Projects regional events in Belgium, Romania, and the UK.

Showcasing your projects at Coolest Projects UK 2018

Coolest Projects is a world-leading showcase that empowers and inspires the next generation of digital creators, innovators, changemakers, and entrepreneurs. This year, for the first time, we brought Coolest Projects to the UK for a spectacular regional event in London!

In September we’ll be holding the inaugural Coolest Projects North America at the Discovery Cube in Orange County.

Coolest Projects began as a volunteer-run event, and we’re immensely privileged to have this wonderful showcase for our community. We are enormously grateful to all the staff and volunteers who continue to give huge amounts of their time, effort, and talent every year to make it the wonderful event that it is. Thank you, all of you.

Events like these give me hope that the future of our industry will be every bit as exciting, and vastly more diverse, than our past and present. If you have a chance to participate in one of them, I think you’ll come away feeling the same.

The post Coolest Projects International 2018 appeared first on Raspberry Pi.



Source: Raspberry Pi – Coolest Projects International 2018

Build your own weather station with our new guide!

One of the most common enquiries I receive at Pi Towers is “How can I get my hands on a Raspberry Pi Oracle Weather Station?” Now the answer is: “Why not build your own version using our guide?”

Build Your Own weather station kit assembled

Tadaaaa! The BYO weather station fully assembled.

Our Oracle Weather Station

In 2016 we sent out nearly 1000 Raspberry Pi Oracle Weather Station kits to schools from around the world who had applied to be part of our weather station programme. In the original kit was a special HAT that allows the Pi to collect weather data with a set of sensors.

The original Raspberry Pi Oracle Weather Station HAT – Build Your Own Raspberry Pi weather station

The original Raspberry Pi Oracle Weather Station HAT

We designed the HAT to enable students to create their own weather stations and mount them at their schools. As part of the programme, we also provide an ever-growing range of supporting resources. We’ve seen Oracle Weather Stations in great locations with a huge differences in climate, and they’ve even recorded the effects of a solar eclipse.

Our new BYO weather station guide

We only had a single batch of HATs made, and unfortunately we’ve given nearly* all the Weather Station kits away. Not only are the kits really popular, we also receive lots of questions about how to add extra sensors or how to take more precise measurements of a particular weather phenomenon. So today, to satisfy your demand for a hackable weather station, we’re launching our Build your own weather station guide!

Build Your Own Raspberry Pi weather station

Fun with meteorological experiments!

Our guide suggests the use of many of the sensors from the Oracle Weather Station kit, so can build a station that’s as close as possible to the original. As you know, the Raspberry Pi is incredibly versatile, and we’ve made it easy to hack the design in case you want to use different sensors.

Many other tutorials for Pi-powered weather stations don’t explain how the various sensors work or how to store your data. Ours goes into more detail. It shows you how to put together a breadboard prototype, it describes how to write Python code to take readings in different ways, and it guides you through recording these readings in a database.

Build Your Own Raspberry Pi weather station on a breadboard

There’s also a section on how to make your station weatherproof. And in case you want to move past the breadboard stage, we also help you with that. The guide shows you how to solder together all the components, similar to the original Oracle Weather Station HAT.

Who should try this build

We think this is a great project to tackle at home, at a STEM club, Scout group, or CoderDojo, and we’re sure that many of you will be chomping at the bit to get started. Before you do, please note that we’ve designed the build to be as straight-forward as possible, but it’s still fairly advanced both in terms of electronics and programming. You should read through the whole guide before purchasing any components.

Build Your Own Raspberry Pi weather station – components

The sensors and components we’re suggesting balance cost, accuracy, and easy of use. Depending on what you want to use your station for, you may wish to use different components. Similarly, the final soldered design in the guide may not be the most elegant, but we think it is achievable for someone with modest soldering experience and basic equipment.

You can build a functioning weather station without soldering with our guide, but the build will be more durable if you do solder it. If you’ve never tried soldering before, that’s OK: we have a Getting started with soldering resource plus video tutorial that will walk you through how it works step by step.

Prototyping HAT for Raspberry Pi weather station sensors

For those of you who are more experienced makers, there are plenty of different ways to put the final build together. We always like to hear about alternative builds, so please post your designs in the Weather Station forum.

Our plans for the guide

Our next step is publishing supplementary guides for adding extra functionality to your weather station. We’d love to hear which enhancements you would most like to see! Our current ideas under development include adding a webcam, making a tweeting weather station, adding a light/UV meter, and incorporating a lightning sensor. Let us know which of these is your favourite, or suggest your own amazing ideas in the comments!

*We do have a very small number of kits reserved for interesting projects or locations: a particularly cool experiment, a novel idea for how the Oracle Weather Station could be used, or places with specific weather phenomena. If have such a project in mind, please send a brief outline to weather@raspberrypi.org, and we’ll consider how we might be able to help you.

The post Build your own weather station with our new guide! appeared first on Raspberry Pi.



Source: Raspberry Pi – Build your own weather station with our new guide!

Protecting coral reefs with Nemo-Pi, the underwater monitor

The German charity Save Nemo works to protect coral reefs, and they are developing Nemo-Pi, an underwater “weather station” that monitors ocean conditions. Right now, you can vote for Save Nemo in the Google.org Impact Challenge.

Nemo-Pi — Save Nemo

Save Nemo

The organisation says there are two major threats to coral reefs: divers, and climate change. To make diving saver for reefs, Save Nemo installs buoy anchor points where diving tour boats can anchor without damaging corals in the process.

reef damaged by anchor
boat anchored at buoy

In addition, they provide dos and don’ts for how to behave on a reef dive.

The Nemo-Pi

To monitor the effects of climate change, and to help divers decide whether conditions are right at a reef while they’re still on shore, Save Nemo is also in the process of perfecting Nemo-Pi.

Nemo-Pi schematic — Nemo-Pi — Save Nemo

This Raspberry Pi-powered device is made up of a buoy, a solar panel, a GPS device, a Pi, and an array of sensors. Nemo-Pi measures water conditions such as current, visibility, temperature, carbon dioxide and nitrogen oxide concentrations, and pH. It also uploads its readings live to a public webserver.

Inside the Nemo-Pi device — Save Nemo
Inside the Nemo-Pi device — Save Nemo
Inside the Nemo-Pi device — Save Nemo

The Save Nemo team is currently doing long-term tests of Nemo-Pi off the coast of Thailand and Indonesia. They are also working on improving the device’s power consumption and durability, and testing prototypes with the Raspberry Pi Zero W.

web dashboard — Nemo-Pi — Save Nemo

The web dashboard showing live Nemo-Pi data

Long-term goals

Save Nemo aims to install a network of Nemo-Pis at shallow reefs (up to 60 metres deep) in South East Asia. Then diving tour companies can check the live data online and decide day-to-day whether tours are feasible. This will lower the impact of humans on reefs and help the local flora and fauna survive.

Coral reefs with fishes

A healthy coral reef

Nemo-Pi data may also be useful for groups lobbying for reef conservation, and for scientists and activists who want to shine a spotlight on the awful effects of climate change on sea life, such as coral bleaching caused by rising water temperatures.

Bleached coral

A bleached coral reef

Vote now for Save Nemo

If you want to help Save Nemo in their mission today, vote for them to win the Google.org Impact Challenge:

  1. Head to the voting web page
  2. Click “Abstimmen” in the footer of the page to vote
  3. Click “JA” in the footer to confirm

Voting is open until 6 June. You can also follow Save Nemo on Facebook or Twitter. We think this organisation is doing valuable work, and that their projects could be expanded to reefs across the globe. It’s fantastic to see the Raspberry Pi being used to help protect ocean life.

The post Protecting coral reefs with Nemo-Pi, the underwater monitor appeared first on Raspberry Pi.



Source: Raspberry Pi – Protecting coral reefs with Nemo-Pi, the underwater monitor

MagPi 70: Home automation with Raspberry Pi

Hey folks, Rob here! It’s the last Thursday of the month, and that means it’s time for a brand-new The MagPi. Issue 70 is all about home automation using your favourite microcomputer, the Raspberry Pi.

Cover of The MagPi 70 — Raspberry Pi home automation and tech upcycling

Home automation in this month’s The MagPi!

Raspberry Pi home automation

We think home automation is an excellent use of the Raspberry Pi, hiding it around your house and letting it power your lights and doorbells and…fish tanks? We show you how to do all of that, and give you some excellent tips on how to add even more automation to your home in our ten-page cover feature.

Upcycle your life

Our other big feature this issue covers upcycling, the hot trend of taking old electronics and making them better than new with some custom code and a tactically placed Raspberry Pi. For this feature, we had a chat with Martin Mander, upcycler extraordinaire, to find out his top tips for hacking your old hardware.

Article on upcycling in The MagPi 70 — Raspberry Pi home automation and tech upcycling

Upcycling is a lot of fun

But wait, there’s more!

If for some reason you want even more content, you’re in luck! We have some fun tutorials for you to try, like creating a theremin and turning a Babbage into an IoT nanny cam. We also continue our quest to make a video game in C++. Our project showcase is headlined by the Teslonda on page 28, a Honda/Tesla car hybrid that is just wonderful.

Diddyborg V2 review in The MagPi 70 — Raspberry Pi home automation and tech upcycling

We review PiBorg’s latest robot

All this comes with our definitive reviews and the community section where we celebrate you, our amazing community! You’re all good beans

Teslonda article in The MagPi 70 — Raspberry Pi home automation and tech upcycling

An amazing, and practical, Raspberry Pi project

Get The MagPi 70

Issue 70 is available today from WHSmith, Tesco, Sainsbury’s, and Asda. If you live in the US, head over to your local Barnes & Noble or Micro Center in the next few days for a print copy. You can also get the new issue online from our store, or digitally via our Android and iOS apps. And don’t forget, there’s always the free PDF as well.

New subscription offer!

Want to support the Raspberry Pi Foundation and the magazine? We’ve launched a new way to subscribe to the print version of The MagPi: you can now take out a monthly £4 subscription to the magazine, effectively creating a rolling pre-order system that saves you money on each issue.

The MagPi subscription offer — Raspberry Pi home automation and tech upcycling

You can also take out a twelve-month print subscription and get a Pi Zero W plus case and adapter cables absolutely free! This offer does not currently have an end date.

That’s it for today! See you next month.

Animated GIF: a door slides open and Captain Picard emerges hesitantly

The post MagPi 70: Home automation with Raspberry Pi appeared first on Raspberry Pi.



Source: Raspberry Pi – MagPi 70: Home automation with Raspberry Pi

Randomly generated, thermal-printed comics

Python code creates curious, wordless comic strips at random, spewing them from the thermal printer mouth of a laser-cut body reminiscent of Disney Pixar’s WALL-E: meet the Vomit Comic Robot!

The age of the thermal printer!

Thermal printers allow you to instantly print photos, data, and text using a few lines of code, with no need for ink. More and more makers are using this handy, low-maintenance bit of kit for truly creative projects, from Pierre Muth’s tiny PolaPi-Zero camera to the sound-printing Waves project by Eunice Lee, Matthew Zhang, and Bomani McClendon (and our own Secret Santa Babbage).

Vomiting robots

Interaction designer and developer Cadin Batrack, whose background is in game design and interactivity, has built the Vomit Comic Robot, which creates “one-of-a-kind comics on demand by processing hand-drawn images through a custom software algorithm.”

The robot is made up of a Raspberry Pi 3, a USB thermal printer, and a handful of LEDs.

Comic Vomit Robot Cadin Batrack's Raspberry Pi comic-generating thermal printer machine

At the press of a button, Processing code selects one of a set of Cadin’s hand-drawn empty comic grids and then randomly picks images from a library to fill in the gaps.

Vomit Comic Robot Cadin Batrack's Raspberry Pi comic-generating thermal printer machine

Each image is associated with data that allows the code to fit it correctly into the available panels. Cadin says about the concept behing his build:

Although images are selected and placed randomly, the comic panel format suggests relationships between elements. Our minds create a story where there is none in an attempt to explain visuals created by a non-intelligent machine.

The Raspberry Pi saves the final image as a high-resolution PNG file (so that Cadin can sell prints on thick paper via Etsy), and a Python script sends it to be vomited up by the thermal printer.

Comic Vomit Robot Cadin Batrack's Raspberry Pi comic-generating thermal printer machine

For more about the Vomit Comic Robot, check out Cadin’s blog. If you want to recreate it, you can find the info you need in the Imgur album he has put together.

We ❤ cute robots

We have a soft spot for cute robots here at Pi Towers, and of course we make no exception for the Vomit Comic Robot. If, like us, you’re a fan of adorable bots, check out Mira, the tiny interactive robot by Alonso Martinez, and Peeqo, the GIF bot by Abhishek Singh.

Mira Alfonso Martinez Raspberry Pi

The post Randomly generated, thermal-printed comics appeared first on Raspberry Pi.



Source: Raspberry Pi – Randomly generated, thermal-printed comics

Recording lost seconds with the Augenblick blink camera

Warning: a GIF used in today’s blog contains flashing images.

Students at the University of Bremen, Germany, have built a wearable camera that records the seconds of vision lost when you blink. Augenblick uses a Raspberry Pi Zero and Camera Module alongside muscle sensors to record footage whenever you close your eyes, producing a rather disjointed film of the sights you miss out on.

Augenblick blink camera recording using a Raspberry Pi Zero

Blink and you’ll miss it

The average person blinks up to five times a minute, with each blink lasting 0.5 to 0.8 seconds. These half-seconds add up to about 30 minutes a day. What sights are we losing during these minutes? That is the question asked by students Manasse Pinsuwan and René Henrich when they set out to design Augenblick.

Blinking is a highly invasive mechanism for our eyesight. Every day we close our eyes thousands of times without noticing it. Our mind manages to never let us wonder what exactly happens in the moments that we miss.

Capturing lost moments

For Augenblick, the wearer sticks MyoWare Muscle Sensor pads to their face, and these detect the electrical impulses that trigger blinking.

Augenblick blink camera recording using a Raspberry Pi Zero

Two pads are applied over the orbicularis oculi muscle that forms a ring around the eye socket, while the third pad is attached to the cheek as a neutral point.

Biology fact: there are two muscles responsible for blinking. The orbicularis oculi muscle closes the eye, while the levator palpebrae superioris muscle opens it — and yes, they both sound like the names of Harry Potter spells.

The sensor is read 25 times a second. Whenever it detects that the orbicularis oculi is active, the Camera Module records video footage.

Augenblick blink recording using a Raspberry Pi Zero

Pressing a button on the side of the Augenblick glasses set the code running. An LED lights up whenever the camera is recording and also serves to confirm the correct placement of the sensor pads.

Augenblick blink camera recording using a Raspberry Pi Zero

The Pi Zero saves the footage so that it can be stitched together later to form a continuous, if disjointed, film.

Learn more about the Augenblick blink camera

You can find more information on the conception, design, and build process of Augenblick here in German, with a shorter explanation including lots of photos here in English.

And if you’re keen to recreate this project, our free project resource for a wearable Pi Zero time-lapse camera will come in handy as a starting point.

The post Recording lost seconds with the Augenblick blink camera appeared first on Raspberry Pi.



Source: Raspberry Pi – Recording lost seconds with the Augenblick blink camera

Project Floofball and more: Pi pet stuff

It’s a public holiday here today (yes, again). So, while we indulge in the traditional pastime of barbecuing stuff (ourselves, mainly), here’s a little trove of Pi projects that cater for our various furry friends.

Project Floofball

Nicole Horward created Project Floofball for her hamster, Harold. It’s an IoT hamster wheel that uses a Raspberry Pi and a magnetic door sensor to log how far Harold runs.

Project Floofball: an IoT hamster wheel

An IoT Hamsterwheel using a Raspberry Pi and a magnetic door sensor, to see how far my hamster runs.

You can follow Harold’s runs in real time on his ThingSpeak channel, and you’ll find photos of the build on imgur. Nicole’s Python code, as well as her template for the laser-cut enclosure that houses the wiring and LCD display, are available on the hamster wheel’s GitHub repo.

A live-streaming pet feeder

JaganK3 used to work long hours that meant he couldn’t be there to feed his dog on time. He found that he couldn’t buy an automated feeder in India without paying a lot to import one, so he made one himself. It uses a Raspberry Pi to control a motor that turns a dispensing valve in a hopper full of dry food, giving his dog a portion of food at set times.

A transparent cylindrical hopper of dry dog food, with a motor that can turn a dispensing valve at the lower end. The motor is connected to a Raspberry Pi in a plastic case. Hopper, motor, Pi, and wiring are all mounted on a board on the wall.

He also added a web cam for live video streaming, because he could. Find out more in JaganK3’s Instructable for his pet feeder.

Shark laser cat toy

Sam Storino, meanwhile, is using a Raspberry Pi to control a laser-pointer cat toy with a goshdarned SHARK (which is kind of what I’d expect from the guy who made the steampunk-looking cat feeder a few weeks ago). The idea is to keep his cats interested and active within the confines of a compact city apartment.

Raspberry Pi Automatic Cat Laser Pointer Toy

Post with 52 votes and 7004 views. Tagged with cat, shark, lasers, austin powers, raspberry pi; Shared by JeorgeLeatherly. Raspberry Pi Automatic Cat Laser Pointer Toy

If I were a cat, I would definitely be entirely happy with this. Find out more on Sam’s website.

And there’s more

Michel Parreno has written a series of articles to help you monitor and feed your pet with Raspberry Pi.

All of these makers are generous in acknowledging the tutorials and build logs that helped them with their projects. It’s lovely to see the Raspberry Pi and maker community working like this, and I bet their projects will inspire others too.

Now, if you’ll excuse me. I’m late for a barbecue.

The post Project Floofball and more: Pi pet stuff appeared first on Raspberry Pi.



Source: Raspberry Pi – Project Floofball and more: Pi pet stuff

Enchanting images with Inky Lines, a Pi‑powered polargraph

A hanging plotter, also known as a polar plotter or polargraph, is a machine for drawing images on a vertical surface. It does so by using motors to control the length of two cords that form a V shape, supporting a pen where they meet. We’ve featured one on this blog before: Norbert “HomoFaciens” Heinz’s video is a wonderfully clear introduction to how a polargraph works and what you have to consider when you’re putting one together.

Today, we look at Inky Lines, by John Proudlock. With it, John is creating a series of captivating and beautiful pieces, and with his most recent work, each rendering of an image is unique.

The Inky Lines plotter draws a flock of seagulls in blue ink on white paper. The print head is suspended near the bottom left corner of the image, as the pen inks the wing of a gull

An evolving project

The project isn’t new – John has been working on it for at least a couple of years – but it is constantly evolving. When we first spotted it, John had just implemented code to allow the plotter to produce mesmeric, spiralling patterns.

A blue spiral pattern featuring overlapping "bubbles"
A dense pink spiral pattern, featuring concentric circles and reminiscent of a mandala
A blue spirograph-type pattern formed of large overlapping squares, each offset from its neighbour by a few degrees, producing a four-spiral-armed "galaxy" shape where lines overlap. The plotter's print head is visible in a corner of the image

But we’re skipping ahead. Let’s go back to the beginning.

From pixels to motor movements

John starts by providing an image, usually no more than 100 pixels wide, to a Raspberry Pi. Custom software that he wrote evaluates the darkness of each pixel and selects a pattern of a suitable density to represent it.

The two cords supporting the plotter’s pen are wound around the shafts of two stepper motors, such that the movement of the motors controls the length of the cords: the program next calculates how much each motor must move in order to produce the pattern. The Raspberry Pi passes corresponding instructions to two motor circuits, which transform the signals to a higher voltage and pass them to the stepper motors. These turn by very precise amounts, winding or unwinding the cords and, very slowly, dragging the pen across the paper.

A Raspberry Pi in a case, with a wide flex connected to a GPIO header
The Inky Lines plotter's print head, featuring cardboard and tape, draws an apparently random squiggle
A large area of apparently random pattern drawn by the plotter

John explains,

Suspended in-between the two motors is a print head, made out of a new 3-d modelling material I’ve been prototyping called cardboard. An old coat hanger and some velcro were also used.

(He’s our kind of maker.)

Unique images

The earlier drawings that John made used a repeatable method to render image files as lines on paper. That is, if the machine drew the same image a number of times, each copy would be identical. More recently, though, he has been using a method that yields random movements of the pen:

The pen point is guided around the image, but moves to each new point entirely at random. Up close this looks like a chaotic squiggle, but from a distance of a couple of meters, the human eye (and brain) make order from the chaos and view an infinite number of shades and a smoother, less mechanical image.

An apparently chaotic squiggle

This method means that no matter how many times the polargraph repeats the same image, each copy will be unique.

A gallery of work

Inky Lines’ website and its Instagram feed offer a collection of wonderful pieces John has drawn with his polargraph, and he discusses the different techniques and types of image that he is exploring.

A 3 x 3 grid of varied and colourful images from inkylinespolargraph's Instagram feed

They range from holiday photographs, processed to extract particular features and rendered in silhouette, to portraits, made with a single continuous line that can be several hundred metres long, to generative images spirograph images like those pictured above, created by an algorithm rather than rendered from a source image.

The post Enchanting images with Inky Lines, a Pi‑powered polargraph appeared first on Raspberry Pi.



Source: Raspberry Pi – Enchanting images with Inky Lines, a Pi‑powered polargraph

HackSpace magazine 7: Internet of Everything

We’re usually averse to buzzwords at HackSpace magazine, but not this month: in issue 7, we’re taking a deep dive into the Internet of Things.HackSpace magazine issue 7 cover

Internet of Things (IoT)

To many people, IoT is a shady term used by companies to sell you something you already own, but this time with WiFi; to us, it’s a way to make our builds smarter, more useful, and more connected. In HackSpace magazine #7, you can join us on a tour of the boards that power IoT projects, marvel at the ways in which other makers are using IoT, and get started with your first IoT project!

Awesome projects

DIY retro computing: this issue, we’re taking our collective hat off to Spencer Owen. He stuck his home-brew computer on Tindie thinking he might make a bit of beer money — now he’s paying the mortgage with his making skills and inviting others to build modules for his machine. And if that tickles your fancy, why not take a crack at our Z80 tutorial? Get out your breadboard, assemble your jumper wires, and prepare to build a real-life computer!

Inside HackSpace magazine issue 7

Shameless patriotism: combine Lego, Arduino, and the car of choice for 1960 gold bullion thieves, and you’ve got yourself a groovy weekend project. We proudly present to you one man’s epic quest to add LED lights (controllable via a smartphone!) to his daughter’s LEGO Mini Cooper.

Makerspaces

Patriotism intensifies: for the last 200-odd years, the Black Country has been a hotbed of making. Urban Hax, based in Walsall, is the latest makerspace to show off its riches in the coveted Space of the Month pages. Every space has its own way of doing things, but not every space has a portrait of Rob Halford on the wall. All hail!

Inside HackSpace magazine issue 7

Diversity: advice on diversity often boils down to ‘Be nice to people’, which might feel more vague than actionable. This is where we come in to help: it is truly worth making the effort to give people of all backgrounds access to your makerspace, so we take a look at why it’s nice to be nice, and at the ways in which one makerspace has put niceness into practice — with great results.

And there’s more!

We also show you how to easily calculate the size and radius of laser-cut gears, use a bank of LEDs to etch PCBs in your own mini factory, and use chemistry to mess with your lunch menu.

Inside HackSpace magazine issue 7
Helen Steer inside HackSpace magazine issue 7
Inside HackSpace magazine issue 7

All this plus much, much more waits for you in HackSpace magazine issue 7!

Get your copy of HackSpace magazine

If you like the sound of that, you can find HackSpace magazine in WHSmith, Tesco, Sainsbury’s, and independent newsagents in the UK. If you live in the US, check out your local Barnes & Noble, Fry’s, or Micro Center next week. We’re also shipping to stores in Australia, Hong Kong, Canada, Singapore, Belgium, and Brazil, so be sure to ask your local newsagent whether they’ll be getting HackSpace magazine.

And if you can’t get to the shops, fear not: you can subscribe from £4 an issue from our online shop. And if you’d rather try before you buy, you can always download the free PDF. Happy reading, and happy making!

The post HackSpace magazine 7: Internet of Everything appeared first on Raspberry Pi.



Source: Raspberry Pi – HackSpace magazine 7: Internet of Everything

Join us at the Education Summit at PyCon UK 2018

PyCon UK 2018 will take place on Saturday 15 September to Wednesday 19 September in the splendid Cardiff City Hall, just a few miles from the Sony Technology Centre where the vast majority of Raspberry Pis is made. We’re pleased to announce that we’re curating this year’s Education Summit at the conference, where we’ll offer opportunities for young people to learn programming skills, and for educators to undertake professional development!

PyCon UK Education Summit logo

PyCon UK 2018 is your chance to be welcomed into the wonderful Python community. At the Education Summit, we’ll put on a young coders’ day on the Saturday, and an educators’ day on the Sunday.

Saturday — young coders’ day

On Saturday we’ll be running a CoderDojo full of workshops on Raspberry Pi and micro:bits for young people aged 7 to 17. If they wish, participants will get to make a project and present it to the conference on the main stage, and everyone will be given a free micro:bit to take home!

Kids’ tickets at just £6 will be available here soon.

Kids on a stage at PyCon UK

Kids presenting their projects to the conference

Sunday — educators’ day

PyCon UK has been bringing developers and educators together ever since it first started its education track in 2011. This year’s Sunday will be a day of professional development: we’ll give teachers, educators, parents, and coding club leaders the chance to learn from us and from each other to build their programming, computing, and digital making skills.

Educator workshop at PyCon UK

Professional development for educators

Educators get a special entrance rate for the conference, starting at £48 — get your tickets now. Financial assistance is also available.

Call for proposals

We invite you to send in your proposal for a talk and workshop at the Education Summit! We’re looking for:

  • 25-minute talks for the educators’ day
  • 50-minute workshops for either the young coders’ or the educators’ day

If you have something you’d like to share, such as a professional development session for educators, advice on best practice for teaching programming, a workshop for up-skilling in Python, or a fun physical computing activity for the CoderDojo, then we’d love to hear about it! Please submit your proposal by 15 June.




After the Education Summit, the conference will continue for two days of talks and a final day of development sprints. Feel free to submit your education-related talk to the main conference too if you want to share it with a wider audience! Check out the PyCon UK 2018 website for more information.

We’re looking forward to seeing you in September!

The post Join us at the Education Summit at PyCon UK 2018 appeared first on Raspberry Pi.



Source: Raspberry Pi – Join us at the Education Summit at PyCon UK 2018

Working with the Scout Association on digital skills for life

Today we’re launching a new partnership between the Scouts and the Raspberry Pi Foundation that will help tens of thousands of young people learn crucial digital skills for life. In this blog post, I want to explain what we’ve got planned, why it matters, and how you can get involved.

This is personal

First, let me tell you why this partnership matters to me. As a child growing up in North Wales in the 1980s, Scouting changed my life. My time with 2nd Rhyl provided me with countless opportunities to grow and develop new skills. It taught me about teamwork and community in ways that continue to shape my decisions today.

As my own kids (now seven and ten) have joined Scouting, I’ve seen the same opportunities opening up for them, and like so many parents, I’ve come back to the movement as a volunteer to support their local section. So this is deeply personal for me, and the same is true for many of my colleagues at the Raspberry Pi Foundation who in different ways have been part of the Scouting movement.

That shouldn’t come as a surprise. Scouting and Raspberry Pi share many of the same values. We are both community-led movements that aim to help young people develop the skills they need for life. We are both powered by an amazing army of volunteers who give their time to support that mission. We both care about inclusiveness, and pride ourselves on combining fun with learning by doing.

Raspberry Pi

Raspberry Pi started life in 2008 as a response to the problem that too many young people were growing up without the skills to create with technology. Our goal is that everyone should be able to harness the power of computing and digital technologies, for work, to solve problems that matter to them, and to express themselves creatively.

In 2012 we launched our first product, the world’s first $35 computer. Just six years on, we have sold over 20 million Raspberry Pi computers and helped kickstart a global movement for digital skills.

The Raspberry Pi Foundation now runs the world’s largest network of volunteer-led computing clubs (Code Clubs and CoderDojos), and creates free educational resources that are used by millions of young people all over the world to learn how to create with digital technologies. And lots of what we are able to achieve is because of partnerships with fantastic organisations that share our goals. For example, through our partnership with the European Space Agency, thousands of young people have written code that has run on two Raspberry Pi computers that Tim Peake took to the International Space Station as part of his Mission Principia.

Digital makers

Today we’re launching the new Digital Maker Staged Activity Badge to help tens of thousands of young people learn how to create with technology through Scouting. Over the past few months, we’ve been working with the Scouts all over the UK to develop and test the new badge requirements, along with guidance, project ideas, and resources that really make them work for Scouting. We know that we need to get two things right: relevance and accessibility.

Relevance is all about making sure that the activities and resources we provide are a really good fit for Scouting and Scouting’s mission to equip young people with skills for life. From the digital compass to nature cameras and the reinvented wide game, we’ve had a lot of fun thinking about ways we can bring to life the crucial role that digital technologies can play in the outdoors and adventure.

Compass Coding with Raspberry Pi

We are beyond excited to be launching a new partnership with the Raspberry Pi Foundation, which will help tens of thousands of young people learn digital skills for life.

We also know that there are great opportunities for Scouts to use digital technologies to solve social problems in their communities, reflecting the movement’s commitment to social action. Today we’re launching the first set of project ideas and resources, with many more to follow over the coming weeks and months.

Accessibility is about providing every Scout leader with the confidence, support, and kit to enable them to offer the Digital Maker Staged Activity Badge to their young people. A lot of work and care has gone into designing activities that require very little equipment: for example, activities at Stages 1 and 2 can be completed with a laptop without access to the internet. For the activities that do require kit, we will be working with Scout Stores and districts to make low-cost kit available to buy or loan.

We’re producing accessible instructions, worksheets, and videos to help leaders run sessions with confidence, and we’ll also be planning training for leaders. We will work with our network of Code Clubs and CoderDojos to connect them with local sections to organise joint activities, bringing both kit and expertise along with them.




Get involved

Today’s launch is just the start. We’ll be developing our partnership over the next few years, and we can’t wait for you to join us in getting more young people making things with technology.

Take a look at the brand-new Raspberry Pi resources designed especially for Scouts, to get young people making and creating right away.

The post Working with the Scout Association on digital skills for life appeared first on Raspberry Pi.



Source: Raspberry Pi – Working with the Scout Association on digital skills for life

Raspberry Jam Cameroon #PiParty

Earlier this year on 3 and 4 March, communities around the world held Raspberry Jam events to celebrate Raspberry Pi’s sixth birthday. We sent out special birthday kits to participating Jams — it was amazing to know the kits would end up in the hands of people in parts of the world very far from Raspberry Pi HQ in Cambridge, UK.

The Raspberry Jam Camer team: Damien Doumer, Eyong Etta, Loïc Dessap and Lionel Sichom, aka Lionel Tellem

Preparing for the #PiParty

One birthday kit went to Yaoundé, the capital of Cameroon. There, a team of four students in their twenties — Lionel Sichom (aka Lionel Tellem), Eyong Etta, Loïc Dessap, and Damien Doumer — were organising Yaoundé’s first Jam, called Raspberry Jam Camer, as part of the Raspberry Jam Big Birthday Weekend. The team knew one another through their shared interests and skills in electronics, robotics, and programming. Damien explains in his blog post about the Jam that they planned ahead for several activities for the Jam based on their own projects, so they could be confident of having a few things that would definitely be successful for attendees to do and see.

Show-and-tell at Raspberry Jam Cameroon

Loïc presented a Raspberry Pi–based, Android app–controlled robot arm that he had built, and Lionel coded a small video game using Scratch on Raspberry Pi while the audience watched. Damien demonstrated the possibilities of Windows 10 IoT Core on Raspberry Pi, showing how to install it, how to use it remotely, and what you can do with it, including building a simple application.

Loïc Dessap, wearing a Raspberry Jam Big Birthday Weekend T-shirt, sits at a table with a robot arm, a laptop with a Pi sticker and other components. He is making an adjustment to his set-up.

Loïc showcases the prototype robot arm he built

There was lots more too, with others discussing their own Pi projects and talking about the possibilities Raspberry Pi offers, including a Pi-controlled drone and car. Cake was a prevailing theme of the Raspberry Jam Big Birthday Weekend around the world, and Raspberry Jam Camer made sure they didn’t miss out.

A round pink-iced cake decorated with the words "Happy Birthday RBP" and six candles, on a table beside Raspberry Pi stickers, Raspberry Jam stickers and Raspberry Jam fliers

Yay, birthday cake!!

A big success

Most visitors to the Jam were secondary school students, while others were university students and graduates. The majority were unfamiliar with Raspberry Pi, but all wanted to learn about Raspberry Pi and what they could do with it. Damien comments that the fact most people were new to Raspberry Pi made the event more interactive rather than creating any challenges, because the visitors were all interested in finding out about the little computer. The Jam was an all-round success, and the team was pleased with how it went:

What I liked the most was that we sensitized several people about the Raspberry Pi and what one can be capable of with such a small but powerful device. — Damien Doumer

The Jam team rounded off the event by announcing that this was the start of a Raspberry Pi community in Yaoundé. They hope that they and others will be able to organise more Jams and similar events in the area to spread the word about what people can do with Raspberry Pi, and to help them realise their ideas.

The Raspberry Jam Camer team, wearing Raspberry Jam Big Birthday Weekend T-shirts, pose with young Jam attendees outside their venue

Raspberry Jam Camer gets the thumbs-up

The Raspberry Pi community in Cameroon

In a French-language interview about their Jam, the team behind Raspberry Jam Camer said they’d like programming to become the third official language of Cameroon, after French and English; their aim is to to popularise programming and digital making across Cameroonian society. Neither of these fields is very familiar to most people in Cameroon, but both are very well aligned with the country’s ambitions for development. The team is conscious of the difficulties around the emergence of information and communication technologies in the Cameroonian context; in response, they are seizing the opportunities Raspberry Pi offers to give children and young people access to modern and constantly evolving technology at low cost.

Thanks to Lionel, Eyong, Damien, and Loïc, and to everyone who helped put on a Jam for the Big Birthday Weekend! Remember, anyone can start a Jam at any time — and we provide plenty of resources to get you started. Check out the Guidebook, the Jam branding pack, our specially-made Jam activities online (in multiple languages), printable worksheets, and more.

The post Raspberry Jam Cameroon #PiParty appeared first on Raspberry Pi.



Source: Raspberry Pi – Raspberry Jam Cameroon #PiParty

Naturebytes’ weatherproof Pi and camera case

Naturebytes are making their weatherproof Wildlife Cam Case available as a standalone product for the first time, a welcome addition to the Raspberry Pi ecosystem that should take some of the hassle out of your outdoor builds.

A robin on a bird feeder in a garden with a Naturebytes Wildlife Cam mounted beside it

Weatherproofing digital making projects

People often use Raspberry Pis and Camera Modules for outdoor projects, but weatherproofing your set-up can be tricky. You need to keep water — and tiny creatures — out, but you might well need access for wires and cables, whether for power or sensors; if you’re using a camera, it’ll need something clear and cleanable in front of the lens. You can use sealant, but if you need to adjust anything that you’ve applied it to, you’ll have to remove it and redo it. While we’ve seen a few reasonable options available to buy, the choice has never been what you’d call extensive.

The Naturebytes case

For all these reasons, I was pleased to learn that Naturebytes, the wildlife camera people, are releasing their Wildlife Cam Case as a standalone product for the first time.

Naturebytes case open

The Wildlife Cam Case is ideal for nature camera projects, of course, but it’ll also be useful for anyone who wants to take their Pi outdoors. It has weatherproof lenses that are transparent to visible and IR light, for all your nature observation projects. Its opening is hinged to allow easy access to your hardware, and the case has waterproof access for cables. Inside, there’s a mount for fixing any model of Raspberry Pi and camera, as well as many other components. On top of all that, the case comes with a sturdy nylon strap to make it easy to attach it to a post or a tree.

Naturebytes case additional components

Order yours now!

At the moment, Naturebytes are producing a limited run of the cases. The first batch of 50 are due to be dispatched next week to arrive just in time for the Bank Holiday weekend in the UK, so get them while they’re hot. It’s the perfect thing for recording a timelapse of exactly how quickly the slugs obliterate your vegetable seedlings, and of lots more heartening things that must surely happen in gardens other than mine.

The post Naturebytes’ weatherproof Pi and camera case appeared first on Raspberry Pi.



Source: Raspberry Pi – Naturebytes’ weatherproof Pi and camera case