Neuroscience tools used to understand the microprocessor; they fail

NES Launch: Donkey Kong (1983) This port of the arcade original, one of three titles to launch alongside the Famicom in 1983, was far from a perfect recreation, but it still represented a huge leap from the competing versions on systems from Atari and Coleco.

In 2014, the US announced a new effort to understand the brain. Soon, we would map every single connection within the brain, track the activity of individual neurons, and start to piece together some of the fundamental units of biological cognition. The program was named BRAIN (for Brain Research through Advancing Innovative Neurotechnologies), and it posited that we were on the verge of these breakthroughs because both imaging and analysis hardware were finally powerful enough to produce the necessary data, and we had the software and processing power to make sense of it.

But this week, PLoS Computational Biology published a cautionary note that suggests we may be getting ahead of ourselves. Part experiment, part polemic, a computer scientist got together with a biologist to apply the latest neurobiology approaches to a system we understand far more completely than the brain: a processor booting up the games Donkey Kong and Space Invaders. The results were about as awkward as you might expect, and they helped the researchers make their larger point: we may not understand the brain well enough to understand the brain.

On the surface, this may sound a bit ludicrous. But it gets at something fundamental to the nature of science. Science works on the basis of having models that can be used to make predictions. You can test those models and use the results to refine them. And you have to understand a system on at least some level to build those models in the first place.

Read 15 remaining paragraphs | Comments



Source: Ars Technica – Neuroscience tools used to understand the microprocessor; they fail